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Converse extensionality and apartness

Benno van den Berg1,⇤, Robert Passmann2

1Institute for Logic, Language and Computation, University of Amsterdam,
The Netherlands
2Institute for Logic, Language and Computation, University of Amsterdam,
The Netherlands
⇤Email: b.vandenberg3@uva.nl

Following Kreisel one of the main concerns of proof theory has become
the extraction of hidden computational information from proofs. For this
purpose Gödel’s Dialectica interpretation (combined with negative transla-
tion, if necessary) has proven itself to be indispensable (see [2]).

One of the hardest principles to interpret using a functional interpreta-
tion is the principle of function extensionality. The reason for this is that
the Dialectica interpretation requires one to interpret a stronger form of
extensionality, which we have dubbed converse extensionality.

In this talk I explain how one can give a computational interpretation
of this principle using Brouwer’s notion of apartness. Brouwer’s idea was
that equality might not be primitive concept and could be defined as the
negation of a strong notion of inequality called apartness. The paradigmatic
example is the real numbers, where two reals r and s are apart when there
are disjoint intervals with rational endpoints I1 and I2 such that r 2 I1 and
s 2 I2. Equality of real numbers can then be defined as not being apart.

This talk is based on the preprint [1] written together with Robert Pass-
mann. In that paper we heavily use the language of category theory. How-
ever, in this talk I will explain our results in proof-theoretic terms – no
knowledge of category theory will be required.

References

[1] B. van den Berg and R. Passmann. Converse extensionality and apartness.
arXiv:2103.14482, 2021.

[2] U. Kohlenbach. Applied proof theory: proof interpretations and their use in
mathematics, Springer-Verlag, Berlin, 2008.

[3] A.S. Troelstra. Metamathematical investigation of intuitionistic arithmetic
and analysis, Lecture Notes in Mathematics, Vol. 344, Springer-Verlag,
Berlin-New York, 1973.
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Computational Content of Proofs

Ulrich Berger1,⇤

1Department of Computer Science, Swansea, United Kingdom
⇤Email: u.berger@swansea.ac.uk

One often says that from a constructive mathematical proof of a theo-
rem one can read-o↵ an algorithm provided one has a representation of the
mathematical objects involved. For example, the Intermediate Value Theo-
rem states that every continuous function on the reals that is negative at 0
and positive at 1 has a zero between 0 and 1. With some extra conditions on
the function the proof of the IVT can be done constructively and an algo-
rithm for finding the zero can be read-o↵. This presupposes a representation
of (exact) real numbers and a representation of continuous functions (with
extra conditions). The example suggests that this ‘reading-o↵’ process is
rather ad hoc and heavily dependent on the particular problem area the
theorem is about. In fact this is not so. I will present a uniform theory,
based on historic work by Kleene and Kreisel, for reading-o↵ (or ‘extract-
ing’) the computational content of proofs that applies to a wide range of
abstract axiomatic mathematics. The theory automatically provides repre-
sentations of mathematical objects and formal proofs of the correctness of
the extracted algorithms.

The tutorial will cover: Historical origins, formal definitions of various
extraction methods, discussion of current proof assistants supporting the
extraction of the computational content of proofs, main application areas,
and concrete examples and practical program extraction exercises.
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Tutorial on Proof-theoretic Semantics

Bogdan Dicher1,⇤

1LanCog Group, Centre of Philosophy of the University of Lisbon, Lisbon,
Portugal
⇤Email: bdicher@me.com

Proof-theoretic semantics (PTS) is an inferentialist theory of meaning which
originates in the work of Gentzen in the 1930s and was subsequently devel-
oped by Prawitz, Martin-Löf, Dummett, and more recently by Schroeder-
Heister, who also baptised the theory, and many others. It is an alternative
to Tarskian model-theoretic semantics, aiming to explain the meaning of
the logical constants in terms of the rules of inference that govern their
behaviour in proofs.

The orthodox version of PTS, developed against the background of natu-
ral deduction, can be described as an extended attempt to develop Gentzen’s
suggestion that ‘the introduction [rules] represent, as it were, the ‘definitions’
of the [logical constants], and the eliminations are no more [. . . ] than the
consequences of these definitions’. At its core lies the notion of harmony:
a kind of balance between the relative strength of the introductions and
eliminations of a logical constant that testifies to their successfully defining
a logical constant. The quest for a formal property that accurately captures
the intuitive notion of harmony has dominated much of PTS. Said quest is
the source of less orthodox versions of PTS. By and large, these retain the
focus on harmony, while taking revisionary stances with respect to other
aspects of orthodox PTS, such as the priority of the standard assertionist
setting of PTS, or of natural deduction.

The first part of the tutorial will critically discuss orthodox PTS, focus-
ing on the development of di↵erent conceptions of harmony and their con-
nection with formal properties of Gentzen-style calculi, such as reducibility,
invertibility and normalizability or cut-elimination.

The second part of the tutorial is devoted to less orthodox stances in
PTS. We will first look at bilateralist versions of the programme, which
put denial on a par with assertion and thus introduce a new dimension of
harmony, between the conditions for asserting and, respectively, denying a
sentence. Finally, we will look at versions of PTS that take the sequent
calculus as the framework of choice for specifying definitional rules for the
logical connectives. We will explore the motivation(s) for going down this
path and some results obtained within this framework.

A detailed list of the topics of the tutorial, including recommended read-
ings, is available at bdicher.me in the section PSAST.
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Herbrand meets cyclic proofs

Sebastian Enqvist1,⇤, Bahareh Afshari, Graham E. Leigh
1Department of Philosophy, Stockholm University, Sweden
⇤Email: sebastian.enqvist@philosophy.su.se

Classical logic, in contrast with intuitionistic logic, does not have the
existence property. One may classically prove an existentially quantified
statement without necessarily providing an explicit witness. However, Her-
brand’s theorem states a weaker form of the existence property for classi-
cal logic: if a prenex ⌃1-formula 9~x'(~x) is valid then there is a finite set
of tuples of terms {~t1, . . . ,~tn} (a Herbrand set) such that the disjunction
'(~t1)_ · · ·_ '(~tn) is valid. Herbrand’s theorem can be proved via cut elim-
ination, and supplies a form of “computational content” to classical proofs.
A more direct representation of this computational content was provided
in recent work [1], where each proof is associated with a non-deterministic
higher-order recursion scheme. These so-called Herbrand schemes can be
seen as abstract representations of non-deterministic programs that extract
witnesses for existentially quantified formulas. In particular, when the end
sequent is prenex ⌃1, the scheme associated with a proof provides a Her-
brand set.

Since first-order predicate logic does not contain any explicit mechanism
for inductive reasoning, the recursion scheme associated with a proof will
be acyclic, meaning that the programs that we can represent in this man-
ner will be quite limited as they contain no recursive function calls. An
approach to overcome the limitation, akin to adding induction, is to employ
the system of cyclic proofs for first-order logic extended with Martin-Löf
style inductive definitions, introduced by Brotherston and Simpson [2]. In
this talk we show how Herbrand schemes can be defined for cyclic proofs,
and give examples demonstrating how such schemes can be used to provide
computational content of inductive proofs in a classical setting.

References

[1] B. Afshari, S. Hetzl and G. Leigh, Herbrand’s theorem as higher-order recur-
sion, Annals of Pure and Applied Logic 171 (2020).

[2] J. Brotherston and A. Simpson, Cyclic proof for first-order logic with induc-
tive definitions, in Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX 2005) pp. 78–92.
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Labelled Sequent Calculi

Marianna Girlando1,⇤

1University of Amsterdam
⇤Email: m.girlando@uva.nl

This tutorial aims at presenting a general recipe for defining labelled se-
quent calculi on the basis of classes of possible-worlds models. Moreover, we
will introduce the general strategies needed to prove soundness, complete-
ness, cut-admissibility and other structural properties of the calculi. Modal
logics will be our main case study.

Several researches have studied labelled proof systems, including Fitting
[1], Gabbay [2], Viganò [3] and Negri [4,5]. Labelled sequent calculi enrich
the language of standard Gentzen-style calculi by syntactic elements, the
’labels’, which represent pieces of information from the semantics of the logic
under scope. Thus, labelled calculi represent an expressive and versatile
formalism, allowing to define analytic proof systems for a wide variety of
logics, including modal logics [4] and intermediate logics [5,6,7].
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4 ⌃⌃A ! ⌃A
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Figure 1: The S5 cube of modal logics and their axiom systems

The tutorial is structured as follows. After introducing Gentzen style
sequent calculi and possible-worlds semantics, we will present modular la-
belled calculi for logics in the S5 cube, displayed in Figure 1, and briefly
discuss how they relate to other kinds of calculi for modal logics, e.g., hy-
persequents [8] and nested sequents [9]. We will then show how to prove
soundness and cut-admissibility for the labelled calculi introduced, and how
to prove completeness by extracting a countermodel from a failed proof
search tree, following the method from [10]. Finally, depending on time, we
will introduce labelled calculi for conditional logics, which are modal logics
having a simple topological semantics [11], and for intuitionistic (modal)
logics, whose semantics is defined in terms of (bi)relational possible-worlds
models [5,12,13].
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[1], Gabbay [2], Viganò [3] and Negri [4,5]. Labelled sequent calculi enrich
the language of standard Gentzen-style calculi by syntactic elements, the
’labels’, which represent pieces of information from the semantics of the logic
under scope. Thus, labelled calculi represent an expressive and versatile
formalism, allowing to define analytic proof systems for a wide variety of
logics, including modal logics [4] and intermediate logics [5,6,7].

K

T TB

B

K45
K5

D5
D

D4

DB

D45

S4 S5

B5K4

k ⇤(A ! B) ! (⇤A ! ⇤B)
nec if ` A then ` ⇤A

d ⇤A ! ⌃A
t A ! ⌃A
b A ! ⇤⌃A
4 ⌃⌃A ! ⌃A
5 ⌃A ! ⇤⌃A

Figure 1: The S5 cube of modal logics and their axiom systems

The tutorial is structured as follows. After introducing Gentzen style
sequent calculi and possible-worlds semantics, we will present modular la-
belled calculi for logics in the S5 cube, displayed in Figure 1, and briefly
discuss how they relate to other kinds of calculi for modal logics, e.g., hy-
persequents [8] and nested sequents [9]. We will then show how to prove
soundness and cut-admissibility for the labelled calculi introduced, and how
to prove completeness by extracting a countermodel from a failed proof
search tree, following the method from [10]. Finally, depending on time, we
will introduce labelled calculi for conditional logics, which are modal logics
having a simple topological semantics [11], and for intuitionistic (modal)
logics, whose semantics is defined in terms of (bi)relational possible-worlds
models [5,12,13].

References

[1] M. Fitting, Proof methods for modal and intuitionistic logics, Vol. 169,
Springer Science & Business Media, 2013.

[2] D. M. Gabbay, Labelled Deductive Systems, Oxford Logic Guides, Clarendon
Press, Oxford, 1996.

[3] L. Viganò, Labelled Non-Classical Logics, Springer Science & Business Media,
Switzerland, 2000.

[4] S. Negri, Proof analysis in modal logic, in: Journal of Philosophical Logic,
34(5- 6):507, 2005.

[5] S. Negri, Proof analysis in non-classical logics, in: Logic Colloquium, Vol. 28,
pp. 107-128, 2005.

[6] R. Dyckho↵, and S. Negri, Proof analysis in intermediate logics, in: Archive
for Mathematical Logic 51.1, pp. 71-92, 2012.

[7] A. Ciabattoni, P. Ma↵ezioli, and L. Spendier. Hypersequent and labelled
calculi for intermediate logics, in: International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods, Springer, Berlin,
Heidelberg, 2013.

[8] A. Avron, The method of hypersequents in the proof theory of propositional
non-classical logics, in: Logic: from foundations to applications, Clarendon,
1996.

[9] K. Brünnler, Deep sequent systems for modal logic, in: Archive for Mathe-
matical Logic, 48(6), pp.551–577, 2009.

[10] S. Negri, Proofs and countermodels in non-classical logics, in: Logica Uni-
versalis 8.1, pp. 25-60, 2014.

[11] M. Girlando, S. Negri, and N. Olivetti, Uniform labelled calculi for prefer-
ential conditional logics based on neighbourhood semantics, in: Journal of
Logic and Computation, 31.3, pp. 947-997, 2021.

[12] P. Ma↵ezioli, A. Naibo, and S. Negri, The Church–Fitch knowability paradox
in the light of structural proof theory, in: Synthese, 190(14), pp. 2677–2716,
2013.

[13] S. Marin, M. Morales, and L. Straßburger, A fully labelled proof system for
intuitionistic modal logics, in: Journal of Logic and Computation, Oxford
University Press (OUP), 2021.



12

Proof-theoretic analysis of automated
inductive theorem proving

Stefan Hetzl1,⇤, Jannik Vierling1

1Institute of Discrete Mathematics and Geometry, TU Wien, Austria
⇤Email: stefan.hetzl@tuwien.ac.at

Automating the search for proofs by induction is an imporant topic in
computer science with a history that stretches back decades. A variety
of di↵erent approaches and systems has been developed. Typically, these
systems have been evaluated empirically and thus very little is known about
their theoretical limitations.

In this talk I will present a proof-theoretic approach for understanding
the power and limits of methods for automated inductive theorem proving.
A central tool are translations of proof systems that are intended for au-
tomated proof search into (very) weak arithmetical theories. This allows
not only to locate a method in a partial order of theories but also to pro-
vide examples for unprovable statements which are of practical interest in
computer science.

I will describe concrete such proof-theoretic analyses of two methods of
automated inductive theorem proving: adding explicit induction axioms to
a saturation theorem prover [1] and clause set cycles [2].

References

[1] Stefan Hetzl and Jannik Vierling. Induction and Skolemization in saturation
theorem proving. Annals of Pure and Applied Logic, 174(1):103167, 2023.

[2] Stefan Hetzl and Jannik Vierling. Unprovability results for clause set cycles.
Theoretical Computer Science. to appear.

[3] Jannik Vierling. The limits of automated inductive theorem provers. PhD
thesis, TU Wien, Austria.
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Reductio ad absurdum

Hajime Ishihara1,∗

1School of Information Science, Japan Advanced Institute of Science and

Technology (JAIST), Nomi, Ishikawa 923-1292, Japan
∗Email: ishihara@jaist.ac.jp

Many classical mathematicians consider constructive mathematics a

mathematics without reductio ad absurdum (RAA). However, it seems

that there is no firm consensus between classical and constructive math-

ematicians on what is RAA, and this leads classical mathematicians to

misunderstand constructive mathematics.

In this talk, we clarify what is RAA from constructive point of view

and a typical misunderstanding of classical mathematicians on RAA. We

also examine the definition and an example of RAA in a Japanese high

school mathematics text book, where RAA is called “背理法 (hairihō)”.

It appears that the definition is acceptable from constructive point of

view, but the example not.

References

[1] T. Ohshima et al., 数学 I (Mathematics I ), Sūkenshuppan, 2014.

[2] A. S. Troelstra and D. van Dalen, Constructivism in mathematics. Vol.
I. An introduction, Studies in Logic and the Foundations of Mathematics,
121, North-Holland Publishing Co., Amsterdam, 1988.

[3] D. van Dalen, Logic and Structure, 5th ed., Springer, London, 2013.
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Introduction to Proof Complexity

Raheleh Jalali1,⇤

1Department of Philosophy, Utrecht University, Utrecht, The Netherlands
⇤Email: rahele.jalali@gmail.com

“A student of mine asked me today to give him a reason for a fact which
I did not know was a factand do not yet. He says that if a figure be anyhow
divided and the compartments di↵erently coloured so that figures with any
portion of common boundary line are di↵erently colouredfour colours may
be wanted, but not more . . .. If you retort with some very simple case which
makes me out a stupid animal, I think I must do as the Sphynx did . . .” [3]

This is what the famed mathematician De Morgan wrote to his friend,
Hamilton, the distinguished mathematician and physicist, in 1852. The
content of this letter was the birth of the famous “four color theorem”.
Over the years, several fallacious proofs were given until finally in 1977,
Appel and Haken presented a correct one. The proof, however, required
analyzing many (to be precise, 1936) discrete cases. Facing such a tedious
case-checking work, the question arises whether there exists a shorter, more
brilliant proof. Or, we may more generally wonder:

How hard is it to prove some given theorems? What are their shortest
proofs? Are there such hard theorems that even their shortest proofs go

beyond our physical capacities?

Even in the case that we consider the propositional level, these problems are
meaningful: Let ' be a classical propositional tautology. By the so-called
brute-force method, we know that ' has a proof roughly of the size 2n, where
n is the number of the atomic variables in '. The question is whether there
exists a smarter strategy to verify the validity of ', which does not include
checking all the possible valuations.

The problems we mentioned so far focus on theorems rather than the
theories in which they are proved. Looking in this direction, one can ask
whether there is a theory so strong that no hard theorems exist in it. Oth-
erwise, what happens if there exists no such theory? Then, we may wonder
if there will be a significant decrease in lengths of proofs when we move to
more powerful theories. If so, we can continue to advance towards stronger
and stronger theories and ask: Is there a “strongest” theory, in the sense
that it provides the best proofs?
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analyzing many (to be precise, 1936) discrete cases. Facing such a tedious
case-checking work, the question arises whether there exists a shorter, more
brilliant proof. Or, we may more generally wonder:

How hard is it to prove some given theorems? What are their shortest
proofs? Are there such hard theorems that even their shortest proofs go

beyond our physical capacities?

Even in the case that we consider the propositional level, these problems are
meaningful: Let ' be a classical propositional tautology. By the so-called
brute-force method, we know that ' has a proof roughly of the size 2n, where
n is the number of the atomic variables in '. The question is whether there
exists a smarter strategy to verify the validity of ', which does not include
checking all the possible valuations.

The problems we mentioned so far focus on theorems rather than the
theories in which they are proved. Looking in this direction, one can ask
whether there is a theory so strong that no hard theorems exist in it. Oth-
erwise, what happens if there exists no such theory? Then, we may wonder
if there will be a significant decrease in lengths of proofs when we move to
more powerful theories. If so, we can continue to advance towards stronger
and stronger theories and ask: Is there a “strongest” theory, in the sense
that it provides the best proofs?

These are some examples of the problems considered in proof complexity,
a field whose main aim is investigating the complexity (for instance, length,
i.e., number of symbols) of proofs.

In this course, we begin with introducing proof systems such as Frege and
extended Frege systems and resolution. We introduce Cook’s program and
consider open problems and how they are related to the complexity classes
P, NP, and coNP, and in general to the field of computational complexity.
We will then talk about interpolation, specially feasible interpolation as one
of the main methods to prove lower bounds. Finally, we will talk about the
complexity of proofs in systems for non-classical logics. For more, see [1,2].
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1University of Bern, Bern, Switzerland
⇤Email: gerhard.jaeger@unibe.ch

When Feferman introduced Explicit Mathematics in the mid 1970s his
principal aim was to set up a natural formal framework for Bishop’s con-
structive mathematics. But soon it became evident that systems of explicit
mathematics (now based on intuitionistic or classical logic) play also an im-
portant role in many other parts of logic (such as, for example, subsystems
of second order arithmetic and set theory, reductive proof theory, general-
ized/abstract recursion theory).

In recent years, however, explicit mathematics has become somewhat
quiet. In this talk I will come back to explicit mathematics. Not to explicit
mathematics in its original form, but to some modifications and extensions
that have been triggered by recent developments. In particular, I will dis-
cuss:

• The unique ontology of such explicit systems.

• Extensions by universes and/or ordinals.

• New aspects of predicativity and metapredicativity.

References

[1] S. Feferman, A language and axioms for explicit mathematics, in Algebra and
Logic, J. Crossley (ed.), vol. 450 of Lecture Notes in Mathematics, Springer,
1975, pp. 87–139.

[2] G. Jäger, R. Kahle and T. Studer, Universes in explicit mathematics, in
Annals of Pure and Applied Logic, 109,3 (2001), pp. 141–162.
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Ladner’s seminal work [1] showed that a large number of modal logics
between K and S4 are PSPACE-complete. Adding further axioms, such
as 5, can simplify the underlying complexity of the validity problem, with
S5 being coNP-complete. Indeed, the ‘gap’ between coNP-complete and
PSPACE-complete normal modal logics has formed the subject of several
works in recent years. Yet, we are not aware of attempts to characterise
modal fragments corresponding to levels of the polynomial hierarchy (PH).

PH essentially delineates PSPACE according to ‘bounded quantifier
alternation’ by identifying PSPACE with the set of true quantified Boolean
formulas (QBFs). There are many translations from QBFs to the basic
normal modal logic K, used in particular in modal satisfiability solving, but
their commonly employed complexity measures do not match up: in modal
solving the key measure is that of modal depth; for QBFs it is quantifier
complexity, i.e. the number of alternations of 9 and 8 in a (prenex) QBF.
It is well-known that the alternation of quantifiers in QBFs corresponds
precisely with the levels of the polynomial hierarchy. On the other hand,
Halpern has showed that the validity problem for K for formulas with modal
depth bounded by some constant d ≥ 2 is in fact only coNP-complete [2] .

In this work, we identify a measure on modal formulas that coincides
with quantifier complexity for QBFs. It measures the complexity of proof
search in a simple sequent calculus for modal logic K in terms of alternation
between nondeterministic (modal) rules and co-nondeterministic (^) rules.
It can be seen as a way to provide a formal analogue of ‘quantifier complex-
ity’ in modal logic and allows us to classify formulas of K into fragments
complete for each level of PH, with respect to validity.

This result builds on recent work achieving similar delineations for mul-
tiplicative additive linear/affine logic [3,4] and fragments of intuitionistic
logic [5], also well-known PSPACE-complete logics. Although for modal
logic K, it is enough to study proof search in a standard cut-free sequent
calculus rather than a more sophisticated focussed system.

1This abstract is based on some joint work with Anupam Das, partially published in
the proceedings of AiML 2022 as Modal logic K and the polynomial hierarchy: from QBFs
to K and back again.
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Until the 1970s, proof theoretic investigations were mainly concerned
with theories of arithmetic, inductive definitions, subsystems of second order
arithmetic, and finite type systems. In the late 1970s and early 1980s, the
focus switched to set theories, furnishing ordinal-theoretic proof theory with
a uniform and elegant framework.1

More recently it was shown that these tools can even be adapted to
the context of strong axioms such as the powerset axiom, where one does
not attain complete cut elimination but can nevertheless extract witnessing
information and characterize the strength of the theory in terms of provable
heights of the cumulative hierarchy.

These techniques have interesting applications. For instance, it turns
out that Power Kripke-Platek set theory plus the global axiom of choice
is conservative for ⌃P -formulae over the theory without global choice; by
contrast, if one adds V = L one gets a massively stronger theory.

Other important application concern the existence property for intuitionic
set theories, especially Constructive Zermelo-Fraenkel set theory and Intu-
itionistic Zermelo-Fraenkel set theory with bounded separation.

The tutorial will (gently) introduce infinitary proof calculi for set theo-
ries and develop techniques for cut elimination therein, such as the tool of
collapsing derivations. Later, the tutorial will turn to the aforementioned
applications.

1Especially in the pioneering work of Gerhard Jäger.
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On Proof Equivalence via Combinatorial Proofs
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Proof theory is the branch of logic studying proofs as mathematical objects and
it plays an important role in many areas of computer science. The proof theory has
seen enormous progress during last century, and many di↵erent proof systems have
been developed to study specific aspects of logics, their proofs and their composi-
tionality.

The existence of many di↵erent definitions for the same mathematical objects
is not something unusual. However, unlike in other fields, there is not a clear
understanding when two objects defined in two di↵erent formalisms are the same,
or even when two objects expressed in the same formalisms.

In fact, one can say that proof theory, in its current form, is not the theory of
proofs but the theory of proof systems and their properties: theorems of proof the-
ory, like soundness, completeness, cut admissibility, proof complexity, or focusing,
are not about proofs but about proof systems.

The standard proof theoretical approach to proof equivalence is inspired by the
Curry-Howard correspondence where proofs are interpreted as programs and the
normalization procedure as program execution: two proofs are considered to be
the same if they have the same normal form. Nevertheless, this approach has some
clear limits. On the viewpoint of logic programming, where proofs are interpreted
as program executions rather than programs to be executed, this approach makes
little sense since proofs are already in normal form. Moreover, for classical logic
and its extensions, using the Lafont counter-example [6] it is possible to identify
all proofs of the same formula.

An alternative approach to proof identity is based on the rule permutations,
where two proofs are considered the same if they can be transformed into each
other by a series of simple local transformations permuting the order of rules. Of
course this approach requires two proofs to be presented in the same proof system
or, in case they are expressed in two di↵erent formalisms, that the translation from
a formalism into another translates objects which are considered to be equivalent
into equivalent objects.

One of the novelties of linear logic, was the use of the graphical syntax of
proof nets to represent proofs. This syntax allows to represent proofs as graphs
where edges carry the information about formulas while nodes their interaction via
connectives or axioms. This representation of proofs in the multiplicative linear
logic identified modulo independent rules permutations by the same syntactical
object.
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−−−−− ax
a, ā
−−−−−−−−−− ?
a, ā,?
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−−−−−−−−−−−−−−−−−−−−−−−−− ⌦
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−−−−− ax
b, b̄
−−−−−−−−−− ?
b, b̄,?

−−−−−−−−−−−−−−−−−−−−−−−−−−− ⌦
a, ā⌦ b̄, b,?

# #

? a ⌦ b

ax ax

a ⌦ b ?
ax ax

Figure 1: Three derivations which are equivalent modulo rules permutations and
two (distinct) proof nets encoding them.

This approach has its limit (as showed in [7, 1]) due to the complexity of the
chosen proof equivalence: for some logics it is not possible (unless P-time =
P-space) to have a syntax which, at the same time,

1. represents equivalent proofs by the same syntactic object, and

2. is provided with a polynomial-time procedure to check that a syntactic object
is the representation of a proof, that is, the syntax is a proof system in the
sense of [5].

In this talk we discuss the syntax of combinatorial proofs for classical logic
[9, 10], a proof system (see 2) capturing a proof equivalence (see 1) for this logic.

• •
• •

(ā ^ b̄) _ ( c̄ ^ d̄ ) _ ( d _ c)

Figure 2: A combinatorial proof of the formula (ā ^ b̄) _ (c̄ _ d̄) _ (d _ c)

We then analyze the notion of proof equivalence it enforces in various proof
systems for classical logic which can be simply stated as follows:

Two proofs are the same i↵ they have the same combinatorial proof.

We will conclude by giving an overview how the combinatorial proof syn-
tax can be extended and refined to express proofs for logics such as relevant [13,
2], modal [3], first order [11, 12], intuitionistic [8] and constructive modal [4]
logic; the importance of this problem for mathematicians, computer scientists and
philosophers [14]; as well as presenting the current challenges in extending this
syntax to, e.g., fixed-point logics and higher order logics.
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The ⇧1
2-soundness ordinal o

1
2(T ) of a theory T is a measure of how close

T is to being ⇧1
2-sound. We prove various results about the possible val-

ues of o12(T ) and how these relate to the degree of soundness of T . For
example, o12(T ) is a recursive ordinal if and only if T proves a false Boolean
combination of ⇧1

1 sentences.
We also investigate the ⇧1

2-Spectrum Conjecture, which asserts that the
possible values of o12(T ) for recursively enumerable extensions T of ACA0 are
precisely the ⌃1

1-definable epsilon numbers. We prove the following theorem:

Theorem Suppose that the ⇧1
2-Spectrum Conjecture fails. Then, Second-

Order Arithmetic is consistent.

If time allows, we might mention some results for ⇧1
3 or ⇧1

n.



27

First-Order Interpolation Derived from
Propositional Interpolation1

Matthias Baaz1,⇤, Anela Lolic2

1Institute of Discrete Mathematics and Geometry, TU Wien, Vienna, Aus-
tria
2Institute of Logic and Computation, TU Wien, Vienna, Austria
⇤Email: baaz@logic.at

Ever since Craig’s seminal paper on interpolation [3], interpolation prop-
erties have been recognized as important properties of logical systems. Re-
call that a logic L has interpolation if whenever A ! B holds in L there
exists a formula I in the common language of A and B such that A ! I
and I ! B hold in L.

Propositional interpolation properties can be determined and classified
with relative ease using the ground-breaking results of Maksimova cf. [4-6].
This approach is based on an algebraic analysis of the logic in question. In
contrast first-order interpolation properties are notoriously hard to deter-
mine, even for logics where propositional interpolation is more or less obvi-
ous. For example it is unknown whether GQF

[0,1] (first-order infinitely-valued

Gödel logic) interpolates (cf. [1]) and even for MCQF, the logic of constant
domain Kripke frames of three worlds with two top worlds (an extension of
MC), interpolation proofs are very hard cf. Ono [8]. This situation is due
to the lack of an adequate algebraization of non-classical first-order logics.
In this paper we present a proof theoretic methodology to reduce first-order
interpolation to propositional interpolation:

existence of suitable skolemizations +
existence of Herbrand expansions +

propositional interpolation

9
=

; ) first-order
interpolation.

The construction of the first-order interpolant from the propositional inter-
polant follows this procedure:

1. Develop a validity equivalent skolemization replacing all strong quanti-
fiers2 in the valid formula A ! B to obtain the valid formula A1 ! B1.

1This abstract is based on the publication [2].
2Here we are dealing with quantifiers 8 and 9 such that A(t) ! 9xA(x) and 8xA(x) !

A(t) hold. This occurrence of quantifiers is called weak, the dual occurrence is called
strong.
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2-sound. We prove various results about the possible val-
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example, o12(T ) is a recursive ordinal if and only if T proves a false Boolean
combination of ⇧1

1 sentences.
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Theorem Suppose that the ⇧1
2-Spectrum Conjecture fails. Then, Second-
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3 or ⇧1

n.
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2. Construct a valid Herbrand expansion A2 ! B2 for A1 ! B1. Occur-
rences of 9xB(x) and 8xA(x) are replaced by suitable finite disjunc-
tions

W
B(ti) and conjunctions

V
B(ti), respectively.

3. Interpolate the propositionally valid formula A2 ! B2 with the propo-
sitional interpolant I⇤: A2 ! I⇤ and I⇤ ! B2 are propositionally
valid.

4. Reintroduce weak quantifiers to obtain valid formulas A1 ! I⇤ and
I⇤ ! B1.

5. Eliminate all function symbols and constants not in the common lan-
guage of A1 and B1 by introducing suitable quantifiers in I⇤ (note that
no Skolem functions are in the common language, therefore they are
eliminated). Let I be the result.

6. I is an interpolant for A1 ! B1. A1 ! I and I ! B1 are skolemiza-
tions of A ! I and I ! B. Therefore I is an interpolant of A ! B.

We apply this methodology to lattice based finitely-valued logics and the
weak quantifier and subprenex fragments of infinitely-valued first-order Gödel
logic.

Note that finitely-valued first-order logics admit variants of Maehara’s
Lemma and therefore interpolate if all truth values are quantifier free defin-
able [7]. For logics where not all truth-values are represented by quantifier-
free formulas this argument does not hold, which explains the necessity of
di↵erent interpolation arguments for e.g. MCQF. We provide a decision al-
gorithm for the interpolation property for lattice based finitely-valued logics.

Most results in interpolation are concerned with the question whether
a given logic interpolates but not with the more general question, to check
the minimal extensions with that property. Our framework allows for the
calculation of the relevant first-order extensions, which is given by the cal-
culation of the relevant propositional extensions. For classical logic we show
in this way that the fragment with >,^,_, 8, 9,! interpolates.

Propositional interpolation is easily demonstrated for MC, one of the
seven intermediate logics which admit propositional interpolation [?]. Pre-
vious proofs for the interpolation of MCQF, the first-order variant of MC,
are quite involved, [?]. This interpolation result is a corollary of the main
statement of this approach.
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The notion of formal interpretation arises in several areas of (meta)mathematics
and there exist many variations on it.

For a modal analysis, one assumes a very general version of that concept:
An interpretation of a theory T into a theory T0 is just a structure preserving
translation t such that if T ` A then T0 ` t(A).

Interpretability logics arise as an extension of the language of provability
logic by means of a binary modal operator B capturing the relation of (rela-
tive) interpretability between two arithmetical theories:1 The propositional
formula ABB is then intended as the modal counterpart of the arithmeti-
cal formula IntT(pA⇤q, pB⇤q) – where IntT(x, y) is the formal predicate for
relative interpretability over T – expressing the fact that the arithmetical
theory T extended by A⇤ interprets the arithmetical theory T extended by
B⇤, where ⇤ is any arithmetical realisation for the modal language.

Their origins date back to Visser’s [9,10], who axiomatised by the system
IL the basic modal framework for interpretability. On top of it, several
extensions can be defined.

A relational semantics – aka Veltman semantics – was presented first by
de Jongh and Veltman’s [3] for IL. More complex modal completeness proofs
for extensions were developed by the same authors in subsequent years, and
further techniques were introduced to achieve analogous results since the
beginning of 2000s by Joosten and several collaborators [1].2

On the arithmetical side, by tweaking Solovay’s proof strategy for GL,
it is also possible to prove the arithmetical adequacy of some extensions of
IL wrt di↵erent arithmetical theories. Indeed, a most intriguing aspect of
interpretability logics is a definite sensitivity to the base arithmetic one is
considering.

Nevertheless, there are many further open questions in the field. In the
present context, it is worth noticing that very few is known about proof
theory for interpretability logics.3

1Here we consider arithmetical theories satisfying the Hilbert-Bernays-Löb provability
conditions.

2Subsystems of IL are discussed in Kurahashi and Okawa’s [4].
3Sasaki’s [7] gives a standard sequent calculus for IL; Hakonemi and Joosten’s [2]

presents a labelled tableaux system for some extensions of IL based on standard Veltman
semantics.
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In this talk,4 this gap in the proof-theoretic analysis of interpretability
logics is partially filled by introducing a family G3IL? of labelled sequent
calculi which covers in a natural way a wide range of modal systems for
interpretability. Their design is based on the methodology of explicit in-
ternalisation by Negri and von Plato [5]: these new calculi internalise the
hybrid models by Verbrugge, usually called generalised Veltman structures
[8].

The main contribution of the work I am proposing consists then of the
design of modular sequent systems satisfying main structural desiderata,
namely: admissibility of contraction and weakening, invertibility of logical
rules, and a cut-elimination algorithm. Besides these properties, adequacy
results for G3IL? wrt the standard axiomatic and semantic presentations are
easily established. Moreover, I would also discuss some ideas concerning
bicompleteness of these systems and the current state of my quest for a
(uniform) terminating proof-search strategy for the calculi presented here.

References

[1] E. Goris and J. J. Joosten, Modal Matters for Interpretability Logics, Logic
Journal of the IGPL, 16(4):371–412, 2008.

[2] T. A. Hakoniemi and J. J. Joosten, Labelled tableaux for interpretability
logics, arXiv preprint arXiv:1605.05612, 2016.

[3] D. de Jongh and F. Veltman, Provability logics for relative interpretability,
Mathematical logic, pages 31–42. Springer, 1990.

[4] T. Kurahashi and Y. Okawa. Modal completeness of sublogics of the inter-
pretability logic IL, Mathematical Logic Quarterly, 67(2):164–185, 2021.

[5] S. Negri and J. von Plato, Proof analysis: a contribution to Hilbert’s last
problem, Cambridge University Press, 2011.

[6] C. Perini Brogi, Investigations of proof theory and automated reasoning for
non-classical logics, PhD Thesis, DiMa – University of Genoa, 2022.

[7] K. Sasaki, A cut-free sequent system for the smallest interpretability logic,
Studia Logica, 70(3):353–372, 2002.

[8] L.C. Verbrugge, Verzamelingen-Veltman frames en modellen (set Veltman
frames and models), Unpublished manuscript, Amsterdam, 1992.

[9] A. Visser, Preliminary notes on interpretability logic, Logic group preprint
series, 29, 1988.

[10] A. Visser, Interpretability logic, Mathematical logic, pages 175–209, Springer,
1990.

4Based on the results presented first in [6].

Results and ideas on proof theory for
interpretability logics

Cosimo Perini Brogi1

1Universitat de Barcelona & Formal Vindications SL, Barcelona, Spain

The notion of formal interpretation arises in several areas of (meta)mathematics
and there exist many variations on it.

For a modal analysis, one assumes a very general version of that concept:
An interpretation of a theory T into a theory T0 is just a structure preserving
translation t such that if T ` A then T0 ` t(A).

Interpretability logics arise as an extension of the language of provability
logic by means of a binary modal operator B capturing the relation of (rela-
tive) interpretability between two arithmetical theories:1 The propositional
formula ABB is then intended as the modal counterpart of the arithmeti-
cal formula IntT(pA⇤q, pB⇤q) – where IntT(x, y) is the formal predicate for
relative interpretability over T – expressing the fact that the arithmetical
theory T extended by A⇤ interprets the arithmetical theory T extended by
B⇤, where ⇤ is any arithmetical realisation for the modal language.

Their origins date back to Visser’s [9,10], who axiomatised by the system
IL the basic modal framework for interpretability. On top of it, several
extensions can be defined.

A relational semantics – aka Veltman semantics – was presented first by
de Jongh and Veltman’s [3] for IL. More complex modal completeness proofs
for extensions were developed by the same authors in subsequent years, and
further techniques were introduced to achieve analogous results since the
beginning of 2000s by Joosten and several collaborators [1].2

On the arithmetical side, by tweaking Solovay’s proof strategy for GL,
it is also possible to prove the arithmetical adequacy of some extensions of
IL wrt di↵erent arithmetical theories. Indeed, a most intriguing aspect of
interpretability logics is a definite sensitivity to the base arithmetic one is
considering.

Nevertheless, there are many further open questions in the field. In the
present context, it is worth noticing that very few is known about proof
theory for interpretability logics.3

1Here we consider arithmetical theories satisfying the Hilbert-Bernays-Löb provability
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We introduce the community to our PANDAFOREST project, a joint project
between Czechia and Austria that started in July 2022. The overall research
goal of the project can be stated as follows:

There are interpretations of Herbrand’s theorem extending its scope
to formal number theory, these results are at the expense of analyt-
icity, the most desirable property of Herbrand’s Theorem. Given
the rising importance of formal mathematics and inductive theorem
proving in many areas of computer science, developing our under-
standing of the analyticity boundary is essential.

We tackle these issues using a relatively novel formulation of
induction as sequences of proofs, referred to as proof schemata.
Proof schemata allow a recursive finite representation of many proof
theoretically interesting objects as well as proof structures studied
by the automated theorem proving community. Additionally, proof
schemata provide the perfect framework to discuss analytic complete-
ness of the method we plan to develop. This type of cyclic represen-
tation has been gaining traction over the past few years and will in
all likelihood play an integral role in automated theorem proving and
proof theory in years to come. However, unlike other approaches to
cyclic proof theory, we focus on the extraction of a finite represen-
tation of the Herbrand information contained in formal proofs. The
development of a computational proof-theoretic method for the extrac-
tion of Herbrand information for expressive inductive theories is our
main objective. Furthermore, we hypothesize that developments in
the proof theory of induction, using our chosen methodology (CERES
style proof analysis), will lead to the development of more powerful
inductive theorem provers.

The first steps in this direction are outlined in “Schematic Refutations
of Formula Schemata”[1] and ‘CERES for first-order schemata”[2]. In par-
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ticular, we plan the following to investigate the following research questions
raised by this earlier work:

• What is the precise nature of the unification problem introduced in
[1], does there exists a procedure deciding if two schematic terms are
unifiable, and does this type of unification show up outside of proof-
theoretic domains?

• Is the method introduced in [1] complete modulo a given point tran-
sition system (a concept introduced in [1]), and in what arithmetic
setting is it complete?

• What is the precise relationship between our schematic formalism and
the cyclic proof formalism?

Some of these questions already have partial answers, for example, there
exist sucient conditions for deciding if a pair of schematic terms are unifi-
able [3]. While this work addresses proof theoretic issues, the successful
development of a complete method will result in a new variant of resolution
that handles induction, thus contributing to automated reasoning as well.
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Non-wellfounded proof theory is the study of possibly infinite (but finitely
branching) proof trees, where appropriate global correctness criteria guar-
antee logical consistency. This area originates (in its modern guise) in the
context of the modal µ-calculus [7,5], serving as an alternative framework
to manipulate least and greatest fixed points, and hence to model inductive
and coinductive reasoning. Since then, non-wellfounded proofs have been
widely investigated in many respects, such as predicate logic [2], arithmetic
[8], and proofs-as-programs interpretations [6,4]. Special attention in these
works is drawn to cyclic (or regular) proofs, i.e. non-wellfounded proofs with
only finitely many distinct subproofs, comprising a natural notion of finite
presentability in terms of (possibly cyclic) directed graphs.

The Curry-Howard reading of non-wellfounded proofs has revealed a
deep connection between proof-theoretic properties and computational be-
haviours [6,4]. On the one hand, the typical correctness conditions ensuring
consistency, called progressiveness (or validity) criteria, correspond to total-
ity: functions computed by progressing proofs are always well-defined on all
arguments. On the other hand, regularity has a natural counterpart in the
notion of uniformity : circular proofs can be properly regarded as programs,
i.e. as finite sets of instructions, thus having a ‘computable’ behaviour.

In a recent work [3], the authors extended these connections between
non-wellfounded proof theory and computation to the realm of computa-
tional complexity. We introduced the proof systems CB and CNB capturing,
respectively, the class of functions computable in polynomial time (FP) and
the elementary functions (FELEMENTARY). These proof systems are
defined by identifying global conditions on circular progressing proofs moti-
vated by ideas from Implicit Computational Complexity (ICC). In particular,
the system CB morally represents a cyclic proof theoretic formulation of B,
i.e. Bellantoni and Cook’s function algebra for safe recursion [1].

In this paper we investigate the computational interpretation of more
general non-wellfounded proofs, where finite presentability is relaxed in or-
der to model non-uniform complexity. In particular we consider the class
FP/poly of functions computable in polynomial time by Turing machines
with access to polynomial advice. Equivalently, FP/poly is the class of func-



35

tions computed by families of polynomial-size circuits. Note, in particular,
that such classes include undecidable problems, and so cannot be charac-
terised by purely cyclic proof systems or usual function algebras, which
typically have only computable functions.

We define the system nuB (‘non-uniform B’), allowing a form of non-
wellfoundedness somewhere between arbitrary non-wellfounded proofs and
full regularity, and show that nuB duly characterises FP/poly . The charac-
terisation theorem for nuB relies on an adaption of the techniques in [3] to
the current setting. This requires B(R), a relativisation of Bellantoni and
Cook’s function algebra B to the set of function oracles R, deciding proper-
ties of string length. In particular, as a byproduct of our proof method, we
show that B(R) captures FP/poly , a folklore-style result that, as far as we
know, has not yet appeared in the literature.
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Proof complexity studies the size of proofs in di↵erent proof systems. The
field was originally motivated by a seminal result due to Cook and Reckhow
in [3]: coNP = NP if and only if there is a propositional proof system that
has polynomial-size proofs for each propositional tautology. The contrapos-
itive statement has led to what is called ‘Cook’s program’ for separating P
and NP: find superpolynomial lower bounds for stronger and stronger proof
systems until a general method is found.

Buss-Pudlák games. Prover-Adversary games for proof complexity were
introduced in [5]. At a high level, these are two-player games in which
one player, Prover, tries to ‘prove’ a formula Φ, while the other player,
Adversary, ‘pretends for as long as possible’ that there Φ is falsifiable.

The game initialises with Prover asking Φ and Adversary answering 0.
Then Prover asks other formulas and Adversary assigns Boolean values to
them in turn. Prover wins if Adversary eventually gives answers that con-
stitute a simple contradiction, i.e. contradict some row of a truth table.

Naturally this game is determined, and it turns out that Prover strategies
winning in O(d) rounds correspond precisely to Frege proofs of Φ of height
O(d). In this way we can say that Buss and Pudlák’s game corresponds to
Frege. This correspondence can be extended to other systems by modifying
the class of queries that Prover can make, e.g. bounded-depth for bounded-
depth Frege, or circuits for extended Frege.

Branching programs. A (deterministic) branching program (BP) is a
(rooted) directed acyclic graphG with two distinguished sink nodes, 0 and 1.
Each non-sink node v of G is labelled by a propositional variable and has two
outgoing edges, one labelled by 0 and the other by 1. They are generalised
to non-deterministic branching programs (NBPs) by allowing more than two
outgoing edges for non-sink nodes. We say that an assignment ↵ satisfies a
NBP G if there is a path from the root to the sink 1 ‘consistent’ with ↵.

BPs are conjectured to be exponentially more succinct than Boolean
formulas, since they non-uniformly correspond to log-space (L), as opposed
to NC1. NBPs correspond to nondeterministic log-space NL accordingly.
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Recently, in work by Buss, Das and Knop [1], the proof systems eLDT and
eLNDT were presented for reasoning with BPs and NBPs, respectively.

Work in progress. Inspired by Cook’s ideas in [2] we define a variation of
the Prover-Adversary game by allowing queries to be (Boolean combinations
of) (N)BPs. Our main aim is to characterise fragments of the systems eLDT
and eLNDT by imposing appropriate conditions on the queries.

Proving appropriate upper bounds for the depth of strategies in games for
eLDT and eLNDT requires us to consider Boolean combinations of (N)BPs.
This requires some low level but routine coding work for eLDT, but for
eLNDT we must further prove a non-uniform variant of the Immerman-
Szelepcsényi theorem, NL = coNL [4, 6], bespoke to our setting. In fact,
this work-in-progress aims to exploit the proof theoretic setting to work with
a significant simplification of Immerman–Szelepcsényi. Namely, the subtle
inductive counting aspect of the argument is devolved to the proof level
rather than the formula level.
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Proof complexity studies the size of proofs in di↵erent proof systems. The
field was originally motivated by a seminal result due to Cook and Reckhow
in [3]: coNP = NP if and only if there is a propositional proof system that
has polynomial-size proofs for each propositional tautology. The contrapos-
itive statement has led to what is called ‘Cook’s program’ for separating P
and NP: find superpolynomial lower bounds for stronger and stronger proof
systems until a general method is found.

Buss-Pudlák games. Prover-Adversary games for proof complexity were
introduced in [5]. At a high level, these are two-player games in which
one player, Prover, tries to ‘prove’ a formula Φ, while the other player,
Adversary, ‘pretends for as long as possible’ that there Φ is falsifiable.

The game initialises with Prover asking Φ and Adversary answering 0.
Then Prover asks other formulas and Adversary assigns Boolean values to
them in turn. Prover wins if Adversary eventually gives answers that con-
stitute a simple contradiction, i.e. contradict some row of a truth table.

Naturally this game is determined, and it turns out that Prover strategies
winning in O(d) rounds correspond precisely to Frege proofs of Φ of height
O(d). In this way we can say that Buss and Pudlák’s game corresponds to
Frege. This correspondence can be extended to other systems by modifying
the class of queries that Prover can make, e.g. bounded-depth for bounded-
depth Frege, or circuits for extended Frege.

Branching programs. A (deterministic) branching program (BP) is a
(rooted) directed acyclic graphG with two distinguished sink nodes, 0 and 1.
Each non-sink node v of G is labelled by a propositional variable and has two
outgoing edges, one labelled by 0 and the other by 1. They are generalised
to non-deterministic branching programs (NBPs) by allowing more than two
outgoing edges for non-sink nodes. We say that an assignment ↵ satisfies a
NBP G if there is a path from the root to the sink 1 ‘consistent’ with ↵.

BPs are conjectured to be exponentially more succinct than Boolean
formulas, since they non-uniformly correspond to log-space (L), as opposed
to NC1. NBPs correspond to nondeterministic log-space NL accordingly.
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Background. One of the hallmarks of proof complexity is a deep correspon-
dence between weak theories of arithmetic and propositional proof systems.
This constitutes a logical version of classical uniform-nonuniform correspon-
dences common in complexity theory, and at the same time a nonuniform
version of witnessing arguments (or deterministic-nondeterministic corre-
spondences) common in proof theory. Indeed, the advent of proof com-
plexity has exposed a resulting factorisation of these correspondences, most
famously in the case of polynomial time, as visualised in Figure 1. At least
one goal of proof complexity is to extend such correspondences to other
classes, systems and theories.

Motivation. We are interested in the gap between traditional bounded
arithmetic theories of proof complexity (typically below exponential-time)
and weak theories of arithmetic in proof theory (typically above elementary
computation). A nonuniform version of elementary computation is naturally
given by ‘higher-order’ Boolean logic, an extension of propositional logic by
abstraction and application operations at all finite types. The corresponding
Frege-style proof system is nothing more than Church’s simple type theory
(STT) [4], restricted to Boolean ground type. Our starting point is the
observation that this system in fact bears correspondence with the arith-
metic theory I0 + exp, a well-known theory of elementary computation.
Our main aim is to refine this observation into a bona fide family of corre-
spondences, in the sense of Figure 1, according to levels of the (alternating)
elementary hierarchy.

Work-in-progress. We develop higher-order versions of Buss’ classical
theories that climb up the elementary hierarchy at the same time as anal-
ogous restrictions on cuts in STT, in particular by controlling type level
in induction principles. Our goal is to establish modular characterisations
for levels of the elementary hierarchy, and also intermediate alternating-
time-hierarchies by controlling (higher-type) quantifier complexity. Along
the way, we establish propositional systems corresponding to Buss’ second-
order theories U i

2, V
i
2 in the guise of fragments of 3rd order Boolean logic.
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Figure 1: Proof complexity correspondences for polynomial time. The bot-
tom row, the correspondence between PV and eFrege, is due to Cook in [1].
The left column, the correspondence between S1

2 and PV , is due to Buss in
[2]. The top row, the correspondence between S1

2 and G⇤
1, is due to Kraj́ıček

and Pudlák in [3]. The right column, the correspondence between G⇤
1 and

eFrege, is subsumed by the others, but may also be obtained independently
(a folklore result).
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Modal fixed point logics, such as the µ-calculus and PDL, have received in-
creasing attention from proof theorists in recent years. Basic metalogical results
for corresponding proof systems and axiomatisations are often obtained using an
elegant mixture of techniques from automaton theory and proof theory, yielding
a now healthy landscape of systems for reasoning about modal fixed point logics,
e.g. [1,2,3].

On the proof theoretic side, however, the picture is far less clear. Treatments of
cut-elimination, e.g. [4], and computational interpretations are far from robust and,
furthermore, seemingly lack canonicity. At least one attempt to remedy this is to
reduce the proof theory of fixed point logics to known well-behaved systems, for
instance intuitionistic predicate logic, by means of double-negation and standard
translations [5].

For comparison a similar approach can be carried out in pure modal logic with-
out fixed points, constituting the proposal of ‘Intuitionistic Modal Logic’ IK of
Fischer Servi and Plotkin & Stirling [6,7]. Indeed cut-elimination, and even nor-
malisation for a natural deduction system, are obtained by Simpson in [8]. Char-
acterised as the modal formulas whose standard translations are intuitionistically
first-order provable, an interpretation of classical modal logic is duly obtained by
composing with a specialised Gödel-Gentzen negative translation. On the other
hand this feature of IK exposes significant di↵erences between competing propos-
als for intuitionistic versions of modal logics [9], further exposing a lack of canon-
icity therein.

This work-in-progress aims to develop a bona fide theory of intuitionistic modal
fixed point logic, from both axiomatic and semantic viewpoints, suitable for proof
theoretic endeavours. Inspired by the success of IK and related logics, our guiding
principle to this end is to characterise precisely the logic whose standard transla-
tions into the language of second-order logic (or of first-order logic with inductive
definitions) are intuitionistically provable.

As a starting point, we aim to define a logic IK+, whose simple fixed point
language includes only two transitive closure modalities, ⇤+ and ^+. We can in-
terpret these modal operators within predicate logic by way of di↵erent inductive
definitions. We here report the ones for ^+:
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Hilbert systems IK+ ` A =) IFOLID ` (A)x

~w� ~w�

Sequent calculi IK+ ` A =) IFOLID ` (A)x

f
f

Semantics
?
|= A f

?
|= (A)x

Figure 1: The blue arrows from IK+ ` A to IFOLID ` (A)x represent completed re-
search. The red squiggly arrows represent a way of proving the converse direction,
going through a class of birelational models that needs to be defined.

1. (^+A)x () 9y(Rxy ^ (Ay _ (^+A)y)).

2. (^+A)x := 9y(R+xy ^ Ay), where R+xy () Rxy _ 9z(Rxz ^ R+zy).

These two definitions give rise to two di↵erent sets of inductive first order axioms,
as well as (modal) sequent calculus rules within the framework of [10]. We prove
the equivalence of conditions 1 and 2 in intuitionistic first order logic with inductive
definitions (IFOLID). As a result, we are able to conclude that a natural modal
axiomatisation of IK+, obtained by extending IK by the fixed point characterisation
^+A () ^A _ ^^+A (and similarly for ⇤+), is indeed interpreted into IFOLID;
this result is indicated by the blue arrows in Figure 1.

In order to obtain the converse direction, we are currently investigating a se-
mantics that validates the aforementioned standard translation, and for which IK+

may be complete; these are the red squiggly arrows in Figure 1. Indeed, it is cur-
rently unclear whether natural frame conditions for^+ in the birelational semantics
for intuitionistic modal logic are approriate to this end.
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The axiomatic method can be seen as an extrapolation of knowledge that
is obtained in an almost immediate fashion. For example, in the realm of the
natural numbers, the axiom a+ b = b+ a or rather its universal closure can
be seen as an extrapolation of nearly sensorial knowledge that joining two
quantities is independent on their order. Hilbert would speak of statements
of finitistic nature.

Via Gödel’s famous incompleteness theorems we know that any reason-
able axiomatic theory T is incomplete in that certain true statements will
not be provable within T . Expanding our knowledge beyond the limits of T
thus requires new axioms that mostly can be regarded as extra-sensorial or
extra-empirical as opposed to a+b = b+a. This leaves a large justificational
burden on which extra-empirical principles to accept and which not.

The school of Instrumentalism implies a relaxed epistemology and the
question whether a new principle/axiom should be accepted and regarded
as true is replaced by a merely instrumental viewpoint: if the new principle
is useful for explaining and predicting real-life phenomenon then one should
adopt it.

In this talk we present some discussions and work in progress where we
consider how various results on speed-up of proofs can be interpreted as
support for or challenges to Instrumentalism.

As such we shall be testing the thesis of Instrumentalism using various
scenarios that model possible situations an instrumentalist could see herself
be confronted with. In particular, we will present situations where adding
both a sentence and its negation will yield speed-up. Which choice is the
intstrumentalist to make in such a case. In a sense, our approach thus
has a flavour similar to Solovay’s challenge to Nelson’s thesis on Predicate
Analysis. Nelson proposed in 1986 that Predicative Analysis should be called
that part of mathematics that can be interpreted in Robison’s arithmetic
Q. Solovay provided a serious challenge to this program, to not say that he
ended it, by providing an Orey sentence for Q: a sentence so that itself but
also its negation can be interpreted in Q.
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In our situation is not so clear since what accounts for substantial crit-
icism since there is no clear formalised claim as to what instrumentalism
should embody. As a matter of fact, Instrumentalism is often mentioned
in the realm of theories for Physics. There, it says that physical theories
do not necessarily need to give an ontological account of their theoretical
artefacts. If an artefact like an unobservable quark is useful, then that is its
justification and ontological questions about the artefact itself may lack to
have a particular truth value.

There seems to be no general consensus what usefulness is understood
to mean. One can think of how an artefact gives rise to shorter proofs, more
elegant proofs, or if it helps unifying fields that were unrelated before, or
if it brings more uniformity in the various fields. Notions of elegance or
ability of unification are difficult to pin down, and in this presentation we
shall merely focus on the usefulness with respect to providing shorter proofs.
Having settled on this restrictive modelling assumption we can now see how
existing and new results on speed-up can be used to test positions related
to Instrumentalism.
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We define an annotated cyclic proof system for the modal µ-calculus
using a determinisation method for nondeterministic parity automata. This
proof system is then embedded into the cyclic system Clo presented in [1].
As a corollary we obtain a relatively straight-forward completeness proof of
Kozen’s axiomatisation of the µ-calculus.

In [4] tableaux games for the modal m-calculus were introduced, in which
the first player has a winning strategy i↵ the formula is satisfiable. The
winning condition can be naturally checked by a nondeterministic parity
automaton. The determinisation of that automaton may be used to obtain
a proof system, which has already been accomplished by Jungteerapanich [3],
motivated by the Safra construction [5]. We define a determinisation method
for nondeterministic parity automata, called the binary tree construction.
This method adds a di↵erent perspective and new ideas to concepts intro-
duced in [2]. Using the binary tree construction we define the annotated
cyclic proof system BT, where the annotations are tuples of binary strings.
Moreover, we make explicit use of the deterministic automaton to obtain
soundness and completeness of the proof system.

The main benefit of our proof system is, that all the information of
the automaton is stored in the annotations and no extra control as in [3]
is needed. On the downside, the soundness condition has to speak about
every strongly connected component of the cyclic proof tree. Nevertheless,
we can adapt the notion of a monotone proof from [1], which circumvents
this issue. We show that every BT-proof can be transformed to a monotone
one along the lines of [6]. Every monotone BT-proof can be translated to
a proof in the cyclic proof system Clo presented by Afshari, Leigh [1]. As
Clo can be embedded into Kozen’s axiomatisation Koz of the µ-calculus we
obtain a simplification of the completeness proof of Koz in [1].
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In recent years we have seen increasing interest in cyclic proof systems.
These are systems where proofs can be non-wellfounded, i.e. contain infinite
branches, but nonetheless have only finitely many distinct sub-proofs. This
non-wellfoundedness allows them to simulate inductive arguments without
need for explicit induction axioms. Naturally some appropriate correctness
criterion is required to prevent fallacious reasoning, usually in the form of
some !-regular property of infinite branches (the trace condition).

In this work we develop a cyclic version of the theory ID1, called CID1.
ID1 is a well-known arithmetic theory that extends PA by arithmetical in-
ductive definitions. CID1 is a cyclic version of ID1 similar to how the theory
of cyclic arithmetic (CA) was developed as a cyclic version of PA by Simp-
son [1]. The system is similar in spirit to Brotherston’s cyclic system for
ordinary inductive definitions over first-order logic [2].

Our main results are the soundness of CID1 (with respect to the standard
model) and that ID1 and CID1 prove the same arithmetical sentences. Both
results are proved similarly to the case of CA and PA in [1] at a high level,
but provide significant new technical challenges at the low level.

To prove soundness we assume the existence of a proof of a false state-
ment and then construct an infinite false branch that, under the trace con-
dition, yields a contradiction. In contrast to the case of CA infinite ‘false
branches’ are not completely ruled out by the trace condition and so we have
to be more careful to choose a branch with the appropriate properties. This
is similar in complexity to the countermodel branch construction required
for logics with more complex fixed pionts, such as the µ-calculus, cf. [3].

To show conservativity we employ a metamathematical argument, for-
malising the soundness of CID1 within (a theory conservative over) ID1 and
then appeal to reflection. The big challenge for this approach, as compared
to the similar argument for CA, is that the closure ordinals of our inductive
definitions (up to Church-Kleene) far exceed the proof theoretic ordinal of
the theory (Bachmann-Howard) and so explicit induction on their notations
is not possible for the soundness argument. Thus a di↵erent approach is
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required, namely requiring a formalisation of the theory of (recursive) ordi-
nals at the object level. We expect that similar results carry over to IDn,
the theory of n (nestings of) inductive definitions, for each n 2 ! and thus
ID<!, but this is currently work-in-progress.
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Deep inference [1,6] is a proof formalism allowing to rewrite formulas
deep inside an arbitrary context. This gives more flexibility in the design of
inference rules, and has also been used to design proof systems for modal
logics [5,7]. However, cut-elimination for deep inference systems is more
involved than for traditional sequent style systems. In particular, for modal
logics, no cut-elimination proof that is internal to deep inference has been
given so far.

There are many different cut-elimination techniques in the deep infer-
ence literature, exploiting different aspects of the proof systems they work
on. A particular methodology does however stand out for its generality:
cut-elimination via splitting [2]. Even though this proof has to be redone for
every proof system anew, there is a certain repeating pattern. In order to
formalize this pattern and to obtain a general cut-elimination method that
works for many proof systems at the same time, the method of subatomic
proof theory [4] has been developed. The basic idea is to treat atoms as bi-
nary connectives, leading to a uniform shape of all inference rules. This enor-
mously reduces the number of cases in the case analysis for cut-elimination.
A proof of cut-elimination via splitting usually consists of two parts. Only
the second one is the actual splitting and needs a “linear” system, i.e., one
without weakening and contraction. To remove weakening and contraction,
the first part of the cut-elimination performs a decomposition [2] or cycle
elimination [3].

In this work in progress we present a subatomic proof system for classical
modal logic called SAKKS which is sound and complete for the modal logic
K (presented in Figure 1). Since the subatomic methodology treats atoms
like binary connectives we extend this phenomenon to also treat the unary
modalities as binary connectives.

The set of subatomic formulae for classical modal logic is given by the set
of constants U = {0, 1} and the set of connectives R = { ,∧,∨} ∪ A where
A is a countable set of atoms, denoted by a, b, ... with A∩{ ,∧,∨} = ∅. The
intuitive idea is to interpret 0a1 as a positive occurrence of the atom a, and
1a0 as a negative occurrence a of the same atom. The operator allows us
to capture the modalities. An interpretation function I : F → G is a partial
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(A ∨B) a (C ∨D)
sai↓ −−−−−−−−−−−−−−−−−−−−−−

(A a C) ∨ (B a D)

(A a B) ∧ (C a D)
sai↑ −−−−−−−−−−−−−−−−−−−−−−

(A ∧ C) a (B ∧D)

(A ∨B) ∧ (C ∨D)
∧↓ −−−−−−−−−−−−−−−−−−−−−−

(A ∧ C) ∨ (B ∨D)

(A ∨B) ∧ (C ∧D)
∧↑ −−−−−−−−−−−−−−−−−−−−−−

(A ∧ C) ∨ (B ∧D)

(A ∧B) ∨ (C ∧D)
m −−−−−−−−−−−−−−−−−−−−−−
(A ∨ C) a (B ∨D)

(A a B) ∨ (C a D)
sac↓ −−−−−−−−−−−−−−−−−−−−−−

(A ∨ C) a (B ∨D)

(A ∧B) a (C ∧D)
sac↑ −−−−−−−−−−−−−−−−−−−−−−

(A a C) ∧ (B a D)

(A ∨ C) (B ∨D)
sak↓ −−−−−−−−−−−−−−−−−−−−−

(A B) ∨ (C D)

(A C) ∧ (B D)
sak↑ −−−−−−−−−−−−−−−−−−−−−

(A ∧B) (C ∧D)

Figure 1: System SAKKS

function where F is the set of subatomic formulae and G the set of formulae
of classical modal logic and it is defined as follows:

I(1) = 1 ∀a ∈ A. I(0a0) = 0 ∀a ∈ A. I(1a1) = 1
I(0) = 0 ∀a ∈ A. I(0a1) = a ∀a ∈ A. I(1a0) = a

I(A ∨B) = I(A) ∨ I(B) I(A ∧B) = I(A) ∧ I(B)
I(1 A) = �A I(0 A) = �A

where A,B are interpretable formulae. An example of subatomic formulae
for modal logic is A ≡ ((0 A) ∨ (0a1)) ∧ (1 A) and its interpretation is
I(A) = (�A ∨ a) ∧�A.

We can show that for every interpretable SAKKS derivation with premiss
P and conclusion C, there is a derivation in the normal deep inference system
for modal logic called SKS-K [7] with premiss I(P ) and conclusion I(C). In
other words, we have the following:

Theorem 1 The system SAKKS is conservative extension for the deep in-
ference system SKS-K.

Corollary 2 The system SAKKS is sound and complete with respect to the
modal logic K.

Furthermore, we show cut-elimination via splitting for the linear frag-
ment of the system.
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Restall (2014) presents a defense of a meaning-invariant logical plural-
ism from a proof-theoretic perspective. In short, meaning-invariant logical
pluralism is the joint assertion of the following two theses: i) there is more
than one correct logic; and ii) these correct logics share one and the same
language (Restall, 2014, p. 281). A central point in this position, then,
is that the logical connectives have the same meaning across the di↵erent
logics at issue.

Restall works with the case of classical, intuitionistic, and dual intuition-
istic logic. In Restall’s view, language preservation is achieved across these
three logics because their connectives are governed by the same inference
rules in the standard presentations of their respective sequent calculi.

Dicher (2016) has pointed out that Restall’s view assumes a particular
criterion of rule individuation, which he dubs the sameness claim: inference
rules that di↵er only with respect to the structures of their derivability
relations are identical. According to Dicher this thesis is false, since it
entails an incorrect view of what inference rules are.

In this talk, my aim is to show that Dicher’s argument against the same-
ness claim is unsound. In particular, his understanding of the structure
of the derivability relation does not fit the notion of ‘structure’ at play in
Restall’s proposal.

I proceed in two stages. First, I appeal to Mares’ and Paoli’s (2014)
renewal of Avron’s (1988) distinction between internal and external conse-
quence relation and argue that in Restall’s proposal, the sameness claim
should be understood as holding at the level of the internal consequence
relation. Then, I argue that the particular rules used by Dicher to disprove
the sameness claim do not di↵er only with respect to the structures of the
internal consequence relations of the calculi they are used in. Based on this,
I claim that Dicher has not showned that the sameness claim is false.
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The proof mining program aims to give a computational interpretation
to prima facie non-e↵ective proofs through the application of tools from
logic. In recent years, proof mining has enjoyed many successes in nonlinear
analysis, with logical tools being used to extract very uniform bounds (e.g.
bounds independent of the space). In this work, we present a contribution
to the proof mining of nonlinear analysis.

Recursive inequalities play a big role in nonlinear analysis. A common
way they are used is in establishing the convergence of an iteratively defined
sequence of elements in some space to a point satisfying some properties. A
simple example of this can be seen through the Banach fixed point theorem
where, it can be shown that, for a contraction mapping T with constant
c 2 [0, 1) and x⇤ a fixed point of T, the distance µn := d(Tnx0, x

⇤) satisfies
µn+1  cµn and thus converges to 0.

In our work, we study the convergence properties sequences of nonneg-
ative real numbers {µn} and {βn} satisfying,

µn+1  µn − ↵nβn + γn (1)

with {↵n} a nonnegative sequence of real numbers with a divergent sum
and {γn} a nonnegative sequence of real numbers that converges to 0. This
recursive inequality features in numerous optimization problems in nonlinear
analysis. Typically ↵n represents some step size for an algorithm and γn
represents an error term.

One can easily produce examples where the condition that γn ! 0 is
not enough to deduce the convergence of either {µn} or {βn}. Thus, in the
literature this condition is usually strengthened to one of the two cases:

(I)
P1

i=0 γi < 1

(II) γn/↵n ! 0 as n ! 1.

We study each of these cases in turn and obtain quantitative results
about the convergence of {µn} and {βn} by producing computable rates of
convergences, in some cases.
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It is a known result of Specker [1] that it is not always possible to ob-
tain a computable rate of convergence for converging sequences of com-
putable numbers. In our work we also produce similar negative results.
In scenarios where it is impossible to produce a computable rate of con-
vergence we obtain, instead, a rate of metastablity. This is a functional
Φ : Q+ ⇥ (N ! N) ! N satisfying,

8" 2 Q+ 8g : N ! N 9n  Φ(", g) 8k 2 [n, n+ g(n)](|ak − a|  ") (2)

where, [a, a+ b] := {a, a+ 1, . . . , a+ b}.
The idea of metastability comes from logic. If one takes takes the Her-

brand normal form of the definition of convergence, we obtain a finitary
version of this principle (in the sense of Tao [8]). A rate of metastability will
be a computable interpretation to this definition and can be recognised as
being a solution to the so-called ‘no-counterexample interpretation’ of the
definition of convergence [2,3]. Obtaining rates of metastability using proof
theoretic techniques is a standard result in applied proof theory (e.g.[4,5,6]).

After an abstract study of recursive inequalities, we discuss how our re-
sults about the convergence properties of real numbers have application in
nonlinear analysis. We adapt the work of Alber et al. in [7], to produce a
general gradient descent algorithm and rates of metastability for the con-
vergence of our algorithm to a solution. Furthermore, we are able to pin
point the exact ine↵ective principles which stopped the authors of [7] from
being able to produce explicit rates of convergences for their algorithm. In
addition, we demonstrate how our work generalises known results in the
proof mining literature such as the study of Mann schemes for asymptoti-
cally weakly contractive mappings [9] and in the study of set values accretive
operators ([10] for example).

Alongside this theoretical work, we have also started a Lean library 1

devoted to implementing quantitative results that use recursive inequalities.
This work will be useful as it would allow us to have implemented a large
class of core lemmas used in both in the formalization of nonlinear analysis
and proof theoretic applications. Our formalization project is still very much
in its early stages, with only a handful of known rates of convergences and
metastabilities from the literature, to date, being verified. In addition, we
have also implemented a key construction, from computable analysis, of
a sequence of rational numbers converging to zero without a computable
rate of convergence. This sequence has been adapted allover the applied

1https://github.com/mneri123/Proof-mining-
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proof theory literature to produce negative results, of the type previously
discussed. I shall discuss interesting aspects of the formalization that has
been done so far and also outline future directions for research in both
implementation and potentially automated reasoning.
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Dilators are a certain kind of operators on linear orders that map well-
orders to well-orders. Many natural operators on well-orders could be nat-
urally extended to dilators, for example X 7! X2, X 7! !X , X 7! "X .
Formally, a pre-dilator D is a continuous stable autofunctor on the category
of linear orders and strictly increasing maps. A pre-dilator is a dilator if it
maps well-orders to well-orders.

By Girard’s normal form theorem each pre-dilator is naturally isomor-
phic to a denotation systems D. Which is a special kind of functor given
by a term system consisting of terms t(x1, . . . , xnt) and a system of com-
parison rules between terms, where the comparison between two terms is
determined purely by the pairwise comparisons between their arguments.
Each D(A) consists of all the terms t(a1, . . . , ant), a1 <X . . . <X an com-
pared according to the rules. For f :A ! B we put D(f)(t(a1, . . . , ant)) =
t(f(a1), . . . , f(ant)).

The notion of a countable denotation system could be easily formalized
in the language of second-order arithmetic. When we will be talking about
dilators/pre-dilators in systems of second-order arithmetic we will be always
talking about functors that are denotations systems.

We aim to study provable computable dilators of various systems of
second-order arithmetic. That is, for a given system of second-order arith-
metic T we are interested in the set of all provable computable dilators, i.e.
computable denotation systems D such that T proves that D maps well-
orders to well-orders. Since the set of all indexes of computable dilators is
⇧1

2-complete, in fact a characterization of provable computable dilators of T
is a characterization of the ⇧1

2-consequences of T .
Let λX.!X and λX.X + 1 be the naturally defined denotation systems.

Let λX.!X+1
n be (λX.!X)n ◦ (λX.X + 1).

The following theorem is constitutes ⇧1
2 proof-theoretic analysis of ACA0.

Theorem 1. If D is ACA0-provable computable dilator, then for some n,
there is a natural transformation ⌘:D ! λX.!X+1

n .

proof theory literature to produce negative results, of the type previously
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We generalize Theorem 1 to a ⇧1
2 proof-theoretic analysis of extensions of

ACA0 by the principles Dil(F ) asserting that a computable dilator D indeed
is a dilator, i.e. the well-ordering principles.

Theorem 2. Suppose D is a computable dilator. Then if D is (ACA0 +
Dil(D))-provable computable dilator, then for some n, there is a natural
transformation ⌘:D ! (λX.!X + F (X) + 1)n.
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The idea of using the game approach in logic is not new and has a
long tradition [1]. There are multiple ways in which games can enter the
realm of logic. Games can be either an object of study, e.g., in game logic,
or rather used as a tool to analyse and deal with various logical systems.
Games as tools can be used as proofs or semantics for various logics. There
is a great variety of dierent logic games designed for various tasks. In
this project, however, we are concerned only with two major types of logi-
cal games, namely semantic games and provability games. Semantic games
are played over a particular model M and aimed at identifying truth in
M, i.e., whether a given formula, or a set of formulae, is true in M. The
most well-known example is Hintikka’s game-theoretical semantics (GTS)
[2]. Provability games, on the contrary, correspond to the notion of va-
lidity or, more generally, the relation of logical consequence with the most
prominent example being dialogue logic of Lorenzen and Lorenz [3].

We present Mezhirov game, an alternative provability game initially pro-
posed by Iliya Mezhirov for intuitionistic logic IPC as well as Grzegorczyk

modal logic Grz [4]. Among the significant features of the game are its
finiteness and explicit reference to truth values. It is a two-player zero-sum
game that, though being the game on validity, is closely related to Kripke
semantics. The original approach is extended here to modal logics. The
main results are new games that not only are finite but also shed light on
the relation between the semantic and the syntactic approaches to validity.

The idea is very simple: the Proponent P tries to prove that the formula
is valid whereas the Opponent O seeks to show that this does not hold,
i.e., that there exists a model and interpretation such that the formula in
question is not satisfied there and, hence, not valid. For the simplicity
reasons, we describe a game for Johansson Minimal Logic. The game G(Ï)
played over the formula Ï contains the following elements:

• Ï is the initial formula of the game.

• F is the set of all subformulae of the initial formula Ï.

• the set of players A = {O, P} where P is Proponent and O is Oppo-

nent;
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• players’ corresponding sets of moves will be denoted by P and O.

• a position, or a game state, C is a pair (P, O), where O and P are sets
of subformulae of Ï. The number of possible positions is finite, since
there number of formulae is finite. The starting position is C0 = (Ï, ÿ).

• game valuation function v : F ◊C ≠æ {0, 1} defined recursively. Game
valuation of each subformula of Ï is calculated for every position in
the game, hence we denote valuations in particular games as vi read
as the valuation of Â at some game state i. V is the set of all possible
valuations. For all game position C and all Âi, Âj œ F , p œ Prop,
ı œ {·, ‚, æ}:

v(‹, C) = 1 i ‹ œ O (1)
v(p, C) = 1 i p œ O (2)

v(Âi ı Âj , C) = 1 ≈∆

I
(Âi ı Âj) œ (O fi P)
v(Âi) ıB v(Âj) = 11 (3)

where ıB is the Boolean function associated with ı. The curly
bracket should be read as a conjunction.

The last condition can be read as follows: a formula that is not in
OfiP (also called a non-marked) is always false, and a marked formula
behaves according to its classical truth table.

The game proceeds as follows:

ú Players move by adding a formula to their respective sets (P and O)
which is called marking a formula.

ú If a player has marked a formula and its game valuation is 0, let us
say that this formula is his mistake. If O has no mistakes but P has,
then it’s P’s turn to move. Otherwise, it’s O’s turn.

ú The game terminates when a player whose turn it is cannot move. A
player loses when he cannot move.

The game is tightly related both to the Kripke semantics as well as the
proof theory since the winning strategies for P can be seem as derivations
in a sequent calculus and countermodel can be extracted from O’s winning
strategies. In the talk we are going to present games for several Modal Logics
as well as their relation to Kripke semantics and existing proof systems.
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Prawitz semantics of valid arguments (SVA) [3] is a well-known exam-
ple of proof-theoretic semantics. It can be understood as an extension of
Prawitz’s own normalisation theory for Gentzen’s natural deduction [4],
based on what Schroeder-Heister [5] called the “fundamental corollary”
of Prawitz’s normalisation: in certain (important) systems, closed normal
derivations end by introduction. This can be taken as a sort of “semantic
confirmation” of Gentzen’s claim that introductions fix the meaning of the
logical constants, whereas eliminations are unique functions of the intro-
ductions [2]. Following Dummett’s [1] principle that, if A is provable, then
A must also be canonically provable (where “canonical” means “ending by
introduction”), one can thus simply turn the corollary into a semantic re-
quirement, and replace derivations with arbitrary argument-structures D ,
whose non-introductory inferences be justified by equally arbitrary justifi-
cation procedures J. The general idea of SVA is framed by the case where
D is closed, i.e. has no free variables or assumptions: hD , Ji is valid i↵, by
applying in some order the elements of J, D reduces to a canonical form
whose immediate sub-structures are valid when paired with J.

However, this general idea must be refined through some semantically
crucial intuitions. Firstly, arguments may be simply locally valid, e.g. be-
cause of some specific meaning of the non-logical terminology they involve;
if not, the argument can be said to be logically valid. Hence, we have to
specify how non-logical meaning is determined, but in doing this, we must
comply with a second fact, namely, that argument-structures may be open,
so that validity should be defined for the open case too.

In SVA, determination of non-logical meaning is achieved through atomic
systems ⌃, i.e. the meaning of the non-logical terminology is given in terms
of deductive use of this terminology in purely atomic derivations. Local
validity becomes validity over an atomic system, and validity in the open-
case is dealt with through a kind of closure principle, i.e. open arguments
are valid when all their closed instances are so. At this point, SVA faces with
a first dilemma: when closing open arguments, should we require validity
over one and the same system, or should we require that the property is
preserved over extensions of the system?

Definition 1 hD [x1, .., xn, A1, ..., Am], Ji is NE-valid over ⌃ i↵, for every
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ki in the language of ⌃, for every closed hDj , Jji for Aj valid over ⌃,
hD [k1, ..., kn,D1, ...,Dm], J [ J1 [ ... [ Jmi is valid over ⌃.

Definition 2 hD [x1, .., xn, A1, ..., Am], Ji is WE-valid over ⌃ i↵, for every
⌃+, for every ki in the language of ⌃+, for every closed hDj , Jji for Aj

valid over ⌃+, hD [k1, ..., kn,D1, ...,Dm], J [ J1 [ ... [ Jmi is valid over ⌃+.

This distinction is anything but trivial for, as shown by Schroeder-Heister
[5], it determines whether the overall semantics is or not monotonic.

Proposition 3 NE-validity is non-monotonic, i.e. there is hD , Ji such that,
for some ⌃, for some ⌃+, hD , Ji is NE-valid over ⌃ and hD , Ji is not NE-valid
over ⌃+.

Proposition 4 WE-validity is monotonic, i.e. for every hD , Ji, for every ⌃,
if hD , Ji is WE-valid over ⌃ then, for every ⌃+, hD , Ji is WE-valid over ⌃+.

Concerning logical validity, however, we have a second dilemma, for there
seem to be at least two SVA compatible ways for understanding indepen-
dence from non-logical meaning. This stems from the fact that arguments
are pairs consisting of an argument-structure plus a set of justification proce-
dures. Quantification on non-logical meanings must be hence accompanied
by quantification on sets of justification procedures, and this returns again
two alternatives.

Definition 5 Γ |=1 A i↵ there is D with assumptions Γ and conclusion A
such that, for every ⌃, for some J, hD , Ji is valid over ⌃.

Definition 6 Γ |=2 A i↵ Γ |=1 A with respect to a fixed set of justifying
functions, the validity of which (with respect to their type) be provable.

My aim in this talk is twofold. First, I argue that the options in the
alternatives above have advantages and shortcomings which are symmetric
both from an internal, and from an external point of view - i.e. both within
the same alternative, and with respect to the other one.

NE has the shortcoming of returning a non-monotonic notion of validity,
which is not in line with the idea that if an argument is valid, it should
remain so when expanding the knowledge base. But NE has also the advan-
tage of accounting for the very natural idea that arguments may be valid,
not only thanks to their inferences, but also because of the meaning of their
non-logical vocabulary. WE has the advantage of ensuring monotonicity but,
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since atomic systems fix non-logical meaning, expanding atomic systems in
the open case implies changing this meaning, so WE has also the shortcom-
ing of relaxing too much the idea that validity depends on given non-logical
features.

This sort of priority of the “logico-deductive” aspects of validity is also a
shortcoming of |=2. Γ |=2 A means that we have an argument structure from
Γ to A whose non-introductory inferences are (provably) justified based on
one and the same (recursive) set of functions over every systems, abstracting
from how justification procedures interact with atomic rules. Our argument
is logically valid, not (only) in the sense of being justifiable for every deter-
mination of non-logical meaning, but in the sense of being justified following
the same pattern throughout variations of this meaning. This stability of va-
lidity is similar to the monotonic character of logical validity, granted by WE.
In contrast, |=1 looks at logical validity in a much more “model-theoretic”
sense, i.e. as justifiability relative to determinations of non-logical mean-
ings. This is a natural generalisation of local NE-validity, and accordingly
one where “universal” validity is not correctness of justified inferences ir-
respective of non-logical meanings, but adaptability of these inferences to
those meanings.

If one accepts this reconstruction, one may be also tempted to conclude
that, if we adopt NE (resp. WE) at the local level, we should then adopt |=1

(resp. |=2) at the “global” level. However, as a second aim of my talk, I
suggest that the aforementioned symmetries stem from a deeper duality in
Prawitz’s semantics, i.e. meaning of non-logical terminology vs justification
of generalised eliminations. In particular, I maintain that Prawitz’s notions
of validity are based on four basic “ingredients”, concerning the level (local
or global), the focus and the abstraction elements (atomic bases and/or
justification procedures), and the scope (one-at-a-time or class-like) where
the focus element ranges, within the validity definitions.

Based on this “decomposition” of Prawitz’s notions of validity, one can
not only show that the “mixed” readings NE + |=2 and WE + |=1 enjoy
a kind of symmetry too (inversion of the focus element), but additionally
that the four readings highlighted so far constitute a diagram where certain
interesting order relations hold, and which is complete, namely, the diagram
provides a complete classification of proof-theoretic semantics compatible
with Prawitzian tenets.
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Relevant logics are a well-known family of non-classical logics introduced
to cope with so-called paradoxes of material implication. According to rel-
evantists, ! is intended to express a more fine-grained and philosophically
motivated notion of conditional (see, amongst others, [9, 6, 2]). Part of the
philosophical intuition of relevant logics, at least in the early development
by Anderson and Belnap [1], was that the antecedent and consequent of a
valid conditional must be relevant to each other, in the sense that, in ex-
pressions of the form A ! B, there must be a strong connection between
antecedent and consequent.
The purpose of this talk is to perform a proof theoretic investigation of a
wide number of relevant logics, by starting from the base system known un-
der the label B. We will employ the well-established methodology of labelled
sequent calculi, i.e., we will work with structures that internalize semantic
informations within sequents while being capable, at the same time, of pre-
serving several desirable proof-theoretic properties (see, for example, [5, 7]).
At the semantic level, we will characterise relevant logic B and some of its
extensions by using reduced Routley-Meyer models, namely, relational struc-
tures with a ternary relation between worlds along with a unique distinct
element considered as the real (or actual) world (see, e.g., [9, 10, 3]). We will
introduce a variety of labelled calculi that reflect, at the syntactic level, se-
mantic informations taken exactly from reduced Routley-Meyer models. To
be precise, rules for negation, ⇠, and implication, !, will have the following
shape:

Γ ) ∆, a⇤ : A
L⇠

a : ⇠A,Γ ) ∆

a⇤ : A,Γ ) ∆
R⇠

Γ ) ∆, a : ⇠A

Rabc, a : A ! B,Γ ) ∆, b : A Rabc, c : B, a : A ! B,Γ ) ∆
L !

Rabc, a : A ! B,Γ ) ∆

Rabc, b : A,Γ ) ∆, c : B
(b, c fresh) R !

Γ ) ∆, a : A ! B

The systems will also include rules acting on labels, i.e., on the objects of
the form Rabc, as well as rules for disjunction _ and conjunction ^. Finally,
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we will discuss some central results including soundness, completeness and
cut-admissibility.
In the second and final part of the talk, we will consider some advantages,
as well as some weak points, of proof theoretic studies done via labelled
sequents and provide some comparisons with other related works. Special
attention will be given to the approaches of Viganò [11] and Negri, Kurokawa
[4]. We shall conclude the talk by giving some indications for future research.
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mantic informations taken exactly from reduced Routley-Meyer models. To
be precise, rules for negation, ⇠, and implication, !, will have the following
shape:

Γ ) ∆, a⇤ : A
L⇠

a : ⇠A,Γ ) ∆

a⇤ : A,Γ ) ∆
R⇠

Γ ) ∆, a : ⇠A

Rabc, a : A ! B,Γ ) ∆, b : A Rabc, c : B, a : A ! B,Γ ) ∆
L !

Rabc, a : A ! B,Γ ) ∆

Rabc, b : A,Γ ) ∆, c : B
(b, c fresh) R !

Γ ) ∆, a : A ! B

The systems will also include rules acting on labels, i.e., on the objects of
the form Rabc, as well as rules for disjunction _ and conjunction ^. Finally,
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Hyperations have been introduced in [1] as a way to transfinitely iterate
normal, i.e., strictly increasing continuous, functions on ordinals, refining
the notion of Veblen functions. The goal of this talk is to discuss the exis-
tence of hyperations in the light of reverse mathematics. The formulation
of this principle in second order arithmetic employs the notion of dilators
introduced by Girard. These are particularly uniform transformations of
linear orders, preserving well-foundedness. I will briefly outline how this
framework allows to extend a sufficiently uniform categorical treatment of
finite iterations to transfinite exponents. Such a construction has already
appeared for the standard Veblen hierarchy in [2].
The main proof-theoretic discussion builds on a framework developed in [3],
relating transfinitely iterated syntactic reflection to semantic !-model re-
flection. The ordinal analysis of ATR0 developed there is relativized to an
arbitrary normal dilator T , yielding an equivalence between the principles

“the hyperation of T preserves well-foundedness”

and
⇧1

2-!RFN
(
⇧1

1- BI+“ T is a dilator”
)

over the weak base theory RCA0. In particular, by ⇧1
2-completeness of

dilators, the uniform existence of hyperations is then equivalent to

⇧1
3-!RFN

(
⇧1

1- BI
)
.

The master thesis on which this talk is based has been supervised by
Andreas Weiermann and Fedor Pakhomov from the Logic group at Ghent
University. It was also presented at the ASL Logic Colloquium 2022.
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Kleene Algebra with Tests (KAT) is a system for reasoning about program
equivalence. It is a finite quasi-equational theory with two sorts, namely
programs and a subset thereof consisting of tests, such that the programs
form a Kleene algebra under the operations (+, ·, ⇤, 0, 1) and the tests form
a Boolean algebra under the operations (+, ·,− , 0, 1).

In terms of programming constructs, the operations +, ·, ⇤ respectively
capture non-deterministic choice, sequential composition and arbitrary rep-
etition. The inclusion of tests allows one to express if-then-else statements
and while loops.

Despite the gain in expressive power, the complexity of deciding KAT-
equalities remains the same as for Kleene Algebra, i.e. it is PSPACE-
complete. In [2] a fragment of KAT is identified which is computationally
much more ecient, yet still reasonably expressive. This fragment, called
Guarded Kleene Algebra with Tests (GKAT), is obtained by replacing the
operations + and ⇤ by their guarded counterparts +(b) and

(b). In terms of
KAT the guarded operations can be encoded as follows:

e+(b) f 7! b · e+ b · f e(b) 7! (b · e)⇤ · b

In this talk we propose a cyclic proof system for GKAT. This system,
named SGKAT, is inspired by the cyclic system in [1] for ordinary Kleene
Algebra. Its rules are given on the next page. In each rule  denotes a list
of literals (i.e. primitive tests or their negations) and capital Greek letters
denote lists of GKAT-expressions. A derivation is said to be a proof if every
infinite branch contains infinitely many application of (b)-l.

In this talk we shall present the soundness and completeness of SGKAT
with respect to the language model from [2]. Furthermore, we shall com-
pare SGKAT to the original system in [1]. Of particular interest is that the
succedents of SGKAT-sequents are lists rather than multisets of lists. Time
permitting, we shall discuss the following questions of our ongoing research:

(1) What is the least possible complexity of proof search?

(2) Can SGKAT be used to prove the completeness of some algebraic ax-
iomatisation of GKAT with respect to the language model?
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Logic’s purpose is about knowledge’s formalisation and its reasoning.
This work is the continuation of Elementos de lógica formalizados en Is-
abelle/HOL [1] in which Syntax, Semantics and the propositional version of
Hintikka’s lemma are studied from the theoretical perspective of First-order
Logic and Automated Theorem Proving [2] by Melvin Fitting. Following the
same perspective, this project focuses on the demonstration of Propositional
Model Existence theorem, concluding with the Propositional Compactness
theorem as a consequence. Inspired by Propositional Proof Systems [3] by
Julius Michaelis and Tobias Nipkow, these results will be formalised us-
ing Isabelle: a proof assistant including automatic reasoning tools to guide
the user on formalising, verifying and automating results. In particular,
Isabelle/HOL is the specialization of Isabelle for High-Order Logic. The
formalisation in Isabelle/HOL of the results presented in this work follows
two directions. In the first place, each lemma is proved in detail without
any automation tool as the result of an inverse research on every step of
the demonstration in order to reach a proof based on elementary rules and
definitions. Conversely, an alternative proof using all the automatic reason-
ing tools that are provide by the proof assistant will be exposed. Isabelle’s
power of automatic reasoning is shown throughout this work as the contrast
between these two opposite proving tactics.

The project’s code is available on GitHub through the following link:
https://github.com/sofsanfer/TFM
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We create a theory of arithmetic for the class FLINSPACE (this class is
the same as Grzegorczyk’s class E2) that we call G2. Our approaches are
distinct from what is found in the literature, in particular the theory that
we develop for FLINSPACE includes I∆0.

We explore connections between G2 and I∆0, and their implications in
the study of complexity classes. After that, we express the usual meta-
mathematical notions in G2: we define numerations of the axioms of a theory;
we define the standard proof predicate Prf⇠(x, y) that expresses “y is the co-
de of a proof of the formula coded by x according to the numeration ⇠”; and
we define the standard provability predicate Pr⇠(x) := 9y.Prf⇠(x, y).

It is a known fact that the derivability condition ‘provability implies pro-
vable provability’ is very sensitive to the considered theory: more precisely,
we have no guarantee that it holds for weak theories of arithmetic (it is an
open problem for general numerations in I∆0).

We study the uniform derivability condition Pr⇠(x) ! Pr⇠(pPr⇠(
•
x)q). We

prove that if PrS(x) is a provability predicate for a finite set of axioms S (in-

cluding a finite number of logical axioms), then G2 ` PrS(x) ! Pr⇠(pPr⇠(
•
x)q).

Moreover, if G2 can verify its axioms, in the sense that, for a suitable G2-
function verifier, G2 ` ⇠(x) ! Prf⇠(pPr⇠(

•
x)q, verifier(x)), then G2 ` Pr⇠(x) !

Pr⇠(pPr⇠(
•
x)q). A sufficient condition for the internal ⌃1-completeness of G2

is also presented. Finally, we present conditions for a numeration ⇠0 of a
finitely axiomatizable theory to satisfy G2 ` Pr⇠0(x) ! Pr⇠(pPr⇠0(

•
x)q).
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In this talk, we will give a characterization, in terms of Weihrauch de-
grees, of the uniform strength of some combinatorial principles related to
Ramsey’s theorem: the theorems we will be chiefly interested in assert the
existence of almost-homogeneous sets for colourings of pairs of natural and
rational numbers satisfying some properties determined by some additional
algebraic structure on the set of colours.

In [1], it was shown that the principles above are equivalent, over RCA0,
to IΣ0

2. We will see that the analysis of the Weihrauch degrees of these
theorems is somewhat more nuanced. The principles LPO′ (the jump of the
Limited Principle of Omniscience) and TCN (the total continuation of closed
choice on N) will be important charachters in this study.
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This work demonstrates the e↵ect of recent work on proof-theoretic va-
lidity on the arguments Dummett (1991) put forward in the Logical Basis of
Metaphysics. There Dummett argued that a proof-theoretic meaning theory
could support intuitionism and certain antirealist metaphysical positions. It
also aims to give some of the history leading up to these results.

In the Logical Basis of Metaphysics, Dummett argues that we can find
answers to deep metaphysical questions about the world, the mind, and
mathematical reality by constructing a satisfactory theory of meaning. Over
half of the book constructs an inferentialist and proof-theoretic theory of
meaning. And shows how this theory leads to anti-realist metaphysics.
Dummett does not endorse this semantics as the correct one. But his sym-
pathies lie with this proof-theoretic approach.

In the 3 decades since the publication of the book, proof-theoretic se-
mantics has made great technical strides. This allows us to assess some of
the claims Dummett made considering this new knowledge. These results
appear to undermine Dummett’s argument. But we will o↵er a response to
this worry.

Word meanings in proof-theoretic semantics are proof rules. Dummett’s
proof-theoretic semantics has two interconnected approaches. The first re-
quires that the set of proof rules for a connective be in harmony. This is
often spelt-out as the requirement that introducing a term and then elimi-
nating it proves nothing new. The second approach is proof-theoretic valid-
ity. Prawitz (1973) developed this semantics in the early seventies. Proof-
theoretic validity separates potential proofs into those that are valid and
those that are invalid. It does this based on a property like, but not identi-
cal to, normalisation. When we talk of the logic of proof-theoretic validity
we mean the logic that includes all and only the valid proofs.

Our focus here will be on proof-theoretic validity, the more technical
of the two notions. Because it is the one that turns out to have the most
surprises in store. Prawitz conjectured, and Dummett hoped, that proof-
theoretic validity would be intuitionistic. For Dummett, this is important
because it is intuitionistic logic being the correct logic that leads to an-
tirealist metaphysics. Initial results showed that, for subsets of the con-
nectives, Prawitz’s conjecture was correct. But it soon became clear that
proof-theoretic validity had super intuitionistic features.
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To show that Prawitz’s conjecture was false took further work. Because
Prawitz’s initial definition had not clearly defined the meanings of the atomic
formulas. Piecha and Schroeder-Heister (2019) showed that for any clarifi-
cation of Prawitz’s definition proof-theoretic validity was not intuitionistic.
Rather it was superintuitionistic. In addition: Goldfarb (2016) showed that
Dummett’s definition was superclassical. Sta↵ord (2021) showed that a clar-
ification of Prawitz’s system was inquisitive logic. Oliveira (2021) showed
that if you focus on elimination rules it was intuitionistic. Sandqvist (2009)
even showed that by fudging the treatment of ‘or’ you could get classical
logic.

The topic considered here is what do all these results mean for Dum-
mett’s work. Let’s consider the two closest to the definition of proof-
theoretic validity Dummett o↵ered. These are Goldfarb’s result for a mod-
ification of Dummett’s definition and Sta↵ord’s result for a modification of
Prawitz’s definition. On the face of it, these results undermine the project.
Goldfarb proved that Dummett’s definition has superclassical validities.
This removes Dummett’s definition from serious consideration. Sta↵ord’s
result proves that Prawitz’s definition (spelt out) aligns with inquisitive
logic. Inquisitive logic is a well-studied logic. It is a semantics for the joint
treatment of questions and assertions. But it is not a semantics for asser-
tions alone because it is not closed under substitution and its closure under
substitution isn’t decidable. Worse yet the rules of Inquisitive logic are not
harmonious. This means that Dummett’s two notions come apart. These
results appear to demonstrate the failure of the project in the Logical Basis
of Metaphysics.

The treatment of the atomic formulas causes these results. Every treat-
ment takes a side on whether you can prove a disjunction without proving
one of the disjuncts. It is this opinionatedness of the atomic formulas that
lead to inquisitive logic.

Atomic formulas’ meanings are always proof rules. But di↵erent ap-
proaches to proof-theoretic validity disagree on what the proof-theoretic
analogue of a model is. Prawitz’s treatment of atomic formulas has evolved
since the seventies. His more recent view holds that the analogue to a model
is a static language or a set of proof rules. But his earlier view was that
the analogue to a model was a stage in a dynamic language. The language
was dynamic in the sense that it was modelled growing as more rules were
added. But why wasn’t a view considered where the analogue of a model
wasn’t a stage in a dynamic language but the entire dynamic language?

It turns out that if one does this then the resulting logic is intuitionistic.
If this treatment is justified, perhaps Dummett is saved from the technical
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results knocking at his metaphysical door. We will, however, end with a
note of caution about Dummett’s move from proof-theoretic semantics to
intuitionistic logic via proof-theoretic validity.
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Universal proof theory is a recent project to study the generic behavior
of proof systems in the same way that universal algebra studies the generic
behavior of algebras. It has been started by investigating the connections
between the form of the rules that a proof system has and the logical prop-
erties the system enjoys. So far, the connection between a relaxed version
of analytic rules and di↵erent flavours of interpolation (Craig, Lyndon, uni-
form, etc) has been investigated for many substructural, intermediate and
modal logics.
In this talk, we will expand this research line by studying the connection
between the form of the primitive rules of a proof system and the rules the
system admits. First, we will present a general form for the constructively
acceptable intuitionistic modal rules, namely the ones that respect the con-
structive character of the intuitionistic ground. We call a sequent system
only consisting of these rules or some basic modal rules a constructive cal-
culus. Then, we will show that any constructive calculus stronger than CK
and satisfying a mild technical condition, feasibly admits all Visser’s rules.
As the disjunction property is a special case of these admissible rules, the
constructive character of the constructive calculi will also be justified. The
proof-theoretical method we use is also quite interesting in its own right, as
it does not need any sort of cut elimination to establish the admissibility.
The feasibility of the extraction method then is just a by-product of this
avoidance.
This type of connection between the form of the rules and the admissi-
ble rules of the corresponding logic has two types of applications. On the
positive side, it uniformly proves the feasible admissibility of all Visser’s
rules in the usual sequent systems of a broad range of intuitionistic modal
logics, including CK, CKT, CK4, CS4, CS5, their Fisher-Servi versions, the
intuitionistic modal logics for bounded depth and bounded width and the
propositional lax logic. On the negative side, though, it shows that if an
intuitionistic modal logic stronger than CK and satisfying a mild technical
condition does not admit the Visser’s rules or specially does not have the
disjunction property, then it does not have a constructive calculus. As the
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class of constructive calculi is a very general class of sequent systems to
consider, this negative result presents an interesting proof theoretical result
about generic proof systems and their non-existence.
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Categorial Grammar (CG) [1] is a formalism for representing natural
language syntax. We assign a category to each word and a rule to each
phrase. The category consists the two-directional arrows. For example, the
verb phrase is represented by the category NP\S as the verb phrase takes
a subject from the left-hand side, e.g., ‘He walks’. For another example,
the adverb is represented by the category ADJ/ADJ as the adverb takes
an adjective from the right-hand side, e.g., ‘very fast’. As these arrows
correspond to the implication in Logic, we can use the theorem-proving
approach to parse natural language by CG.

Combinatory Categorial Grammar (CCG) [2] is an extension of CG with
the combinatory rules to analyze linguistics phenomena. One of the combi-
natory rules is the T combinator called type-raising rule to correspond with
swapping a head in X-bar theory, where the head takes another component.
For instance, X is raised to Y/(X\Y ) by the T combinator. The verb phrase
takes noun phrase, i.e., we regard the verb phrase as a head NP\S. By the
T combinator, the noun phrase is a head S/(NP\S).

In CG and its variants, we parse a sentence by proving the theorem
Γ ` S where Γ is a sequence of categories, e.g., “He walks” is given by
NP,NP\S ` S. Since the natural language sentence is not commutative, we
could not exchange the categories in Γ. Moreover, the sequent calculus of
CG with the type-raising rule is defined as follows, where Roman letters are
categories, and Greek letters are sequences of categories.

Id
X ` X

A >
X/Y, Y ` X

A <
X, X\Y ` Y

T >
Y ` (X/Y )\X T <

X ` Y/(X\Y )
Γ ` X ⌃, X,∆ ` Y

Cut
⌃,Γ,∆ ` Y

As the non-axiom rule is only the cut rule, the proof is not cut-free. The non-
cut-free proof is a problem for the decidability of the sequent calculus. Thus,
it is also a problem for the parsing algorithm. Especially, T combinator is
the hard rule for decidability. Hence, there is a limitation of usage [3] of
the rule in most CCG parsing algorithms. For example, a parser allows the
type raising only for the noun phrase. In the present paper, we eliminate
the limitation of the type-raising rule by the proof-theoretic analysis.
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First, we show the decidability of the parsing algorithm in CG without
the type-raising rule. We represent the parsing tree of CG shown in Figure 1
as a sequent calculus proof shown in Figure 2. In each branch, the length
of the antecedent increases for each cut rule if the antecedent is non-empty.
The number of candidates of parsing tree with n + 1 words is 1

n+1 · 2nCn,
which is a Catalan Therefore, we could decide whether the given sentence is
grammatical or not in finite steps.

Z

X

Γ

Y

⌃

Figure 1: Tree of Γ,⌃ ` Z

...
Γ ` X

A < or A >
X,Y ` Z

Cut
Γ, Y ` Z

...
⌃ ` Y

Cut
Γ,⌃ ` Z

Figure 2: Proof of Γ,⌃ ` Z
Z

X 0

...

X

Γ

Y 0

...

Y

⌃

Figure 3: Tree of
Γ,⌃ ` Z with T

Next, we show the decidability of the parsing al-
gorithm in CG with the type-raising rule. The pars-
ing tree is formed by the cut rule and the type-raising
rule, as shown in Figure 3. By the type-raising rule,
we produce many candidates of trees. Thus, the above
algorithm never halts if the sentence is ungrammati-
cal. We here show the lemma: If a tree has unary rules
in both branches, there is another parsing tree with-
out the unary rules in one branch. The type-raising
rule is swapping a head. Thus, to swap a head in both
branches is ‘swapping and swapping again.’ At least, one swapping is re-
dundant. By the lemma and the analysis of the complexity of the category
(the number of / and \), we show the theorem: The number of type-rasing
in Figure 3 is less than the maximum number of / and \ in the categories
X and Y . Therefore, we prove each binary branch in finite steps. This is
the decidability of the parsing algorithm in CG with the type-raising rule.

Our contribution is two folds: In proof theory, we show the decidable
algorithm to deduce s from a given sentence. In formal grammar, we remove
the limitation of the type-raising rule in categorial grammar.

References

[1] Bar-Hillel, Y. (1953). A quasi-arithmetical notation for syntactic description.
Language, 29(1), 47-58.

[2] Steedman, M. (1987). Combinatory grammars and parasitic gaps. Natural
Language & Linguistic Theory, 5(3), 403-439.

[3] Steedman, M. (1991). Type-raising and directionality in combinatory gram-
mar. Technical Reports (CIS), 390.

Decidable Parsing Algorithm
for Categorial Grammar with Type-raising

Masaya Taniguchi1,⇤

1Japan Advanced Institute of Science and Technology
⇤Email: taniguchi@jaist.ac.jp

Categorial Grammar (CG) [1] is a formalism for representing natural
language syntax. We assign a category to each word and a rule to each
phrase. The category consists the two-directional arrows. For example, the
verb phrase is represented by the category NP\S as the verb phrase takes
a subject from the left-hand side, e.g., ‘He walks’. For another example,
the adverb is represented by the category ADJ/ADJ as the adverb takes
an adjective from the right-hand side, e.g., ‘very fast’. As these arrows
correspond to the implication in Logic, we can use the theorem-proving
approach to parse natural language by CG.

Combinatory Categorial Grammar (CCG) [2] is an extension of CG with
the combinatory rules to analyze linguistics phenomena. One of the combi-
natory rules is the T combinator called type-raising rule to correspond with
swapping a head in X-bar theory, where the head takes another component.
For instance, X is raised to Y/(X\Y ) by the T combinator. The verb phrase
takes noun phrase, i.e., we regard the verb phrase as a head NP\S. By the
T combinator, the noun phrase is a head S/(NP\S).

In CG and its variants, we parse a sentence by proving the theorem
Γ ` S where Γ is a sequence of categories, e.g., “He walks” is given by
NP,NP\S ` S. Since the natural language sentence is not commutative, we
could not exchange the categories in Γ. Moreover, the sequent calculus of
CG with the type-raising rule is defined as follows, where Roman letters are
categories, and Greek letters are sequences of categories.

Id
X ` X

A >
X/Y, Y ` X

A <
X, X\Y ` Y

T >
Y ` (X/Y )\X T <

X ` Y/(X\Y )
Γ ` X ⌃, X,∆ ` Y

Cut
⌃,Γ,∆ ` Y

As the non-axiom rule is only the cut rule, the proof is not cut-free. The non-
cut-free proof is a problem for the decidability of the sequent calculus. Thus,
it is also a problem for the parsing algorithm. Especially, T combinator is
the hard rule for decidability. Hence, there is a limitation of usage [3] of
the rule in most CCG parsing algorithms. For example, a parser allows the
type raising only for the noun phrase. In the present paper, we eliminate
the limitation of the type-raising rule by the proof-theoretic analysis.



84

Sequent Calculi for Two non-Fregean Theories
Agata Tomczyk1,∗

1Adam Mickiewicz University, Faculty of Psychology and Cognitive Science,
Department of Logic and Cognitive Science, Poznań, Poland
∗Email: agata.tomczyk@amu.edu.pl

The aim of the talk is to present Sequent Calculi for two non-Fregean
theories: WB—a Boolean extension of the weakest non-Fregean logic SCI
(Sentential Calculus with Identity), which was proposed by Roman Suszko
[2], and WT—a topological extension of WB. Non-Fregean theories arose as
a formalization of Wittgenstein’s Tractatus [4], which was intertwined with
the abolition of the (so called) Fregean Axiom [2]. Suszko disagreed with
Fregean assumption that semantic correlates of sentences can be identified
with their truth values and, instead, put into focus the concept of situation
as the denotation of a sentence. This particular idea has been formalized
by virtue of the introduction of the binary identity connective “≡”, which
is stronger than material equivalence “↔” and expresses the identity of
situations denoted by two analyzed sentences.

WB is obtained from SCI through the addition of Boole algebra axioms, in
which we expand properties of the identity connective. In WB we consider
identity based on one introduced in SCI. However, WB consists of more
tautological identities than SCI, where the only tautological identity was
the trivial one of the form ϕ ≡ ϕ. In case of WB, ϕ ≡ χ is a tautology if
and only if ϕ ↔ χ is a tautology of Classical Propositional Calculus. To
formalize this notion we introduce proof system G3WB (based on a version
of the original system ℓG3SCI found in [1]), in which each sequent is labelled
with marker allowing (or disabling) the use of identity-dedicated rules. We
will discuss correctness and invertibility of the proposed rule set and identify
issues regarding the cut elimination procedure.

WT, its topological extension, differs from WB in the addition of supple-
mentary identity-dedicated axioms. Its philosophical foundation lays in the
following proposition from Tractatus:

5.141 If p follows from q and q from p then they are one and the
same proposition.

which we can interpret as the fact that two logically equivalent sentences
constitute different variants of the same sentence. Moreover, Suszko exam-
ined WT’s correspondence to modal system S4 [3]. Identity can be thus
interpreted through the means of modal necessity operator “□”. We will
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WT, its topological extension, differs from WB in the addition of supple-
mentary identity-dedicated axioms. Its philosophical foundation lays in the
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which we can interpret as the fact that two logically equivalent sentences
constitute different variants of the same sentence. Moreover, Suszko exam-
ined WT’s correspondence to modal system S4 [3]. Identity can be thus
interpreted through the means of modal necessity operator “□”. We will

briefly comment on this particular correspondence and then we will intro-
duce G3WT, sequent calculus obtained from G3WB as a result of two modi-
fications: abandonment of the labels controlling application of the identity-
dedicated rules and the weakening of the right-sided identity rule. Similarly
as it was mentioned for G3WB, we will discuss its semantic status as well as
the predictions regarding the cut elimination procedure.
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This presentation studies the addition of empirical negation to intermediate
predicate logic CD and provides a cut-free tree-sequent calculus (a variant of
nested sequent calculus) for this logic, denoted by CD⇠. 1 Although empirical
negation was already added to intuitionistic [1, 2] and subintuitionistic [3] logic at
the propositional level, it has not been in the first-order level. A sequent calculus
for the logic obtained by adding empirical negation to intuitionistic propositional
logic is proposed in [4], but this calculus is not cut-free. As is noted in [1, 2, 3], the
satisfaction relation for empirical negation, denoted by “⇠”, is defined as follows:

w |=M⇠ A i↵ g 6|=M A,

where M is an intuitionistic Kripke model, w is a possible world in M , and g is
the least element in the set of possible worlds in M . As is seen in this defini-
tion, empirical negation is formulated on a rooted Kripke model. Accordingly, the
definition of semantic consequence is defined as the truth preservation on a root g.

The logic CD is obtained by adding to intuitionistic predicate logic the follow-
ing axiom: 8x(A _ B)! (A _ 8xB), where x is not free in A. From a semantic
viewpoint, a Kripke model for CD is obtained from an intuitionistic Kripke model
by changing the condition of increasing domain to that of constant domain.

This presentation consists of three sections. The first section introduces Kripke
semantics and Hilbert system for CD⇠ satisfying the soundness. A Kripke model
for CD⇠ is obtained by adding to a Kripke model for CD the satisfaction relation
for empirical negation, described above. The Hilbert system for CD⇠ is obtained
by adding to CD the following axioms and rules related to “⇠”:

A_ ⇠ A,
⇠ A! (⇠⇠ A!B),

From A _B, we may infer ⇠ A!B,
From ⇠ A[z/x] _B, we may infer ⇠⇠ 9xA ! B.

Both of the axioms and the first rule were already provided in [2].
The second section provides tree-sequent calculus TCD⇠ for CD⇠ and shows

the strong completeness. A tree-sequent calculus handles a tree-sequent, which
1This work is based on discussion with Katsuhiko Sano, the supervisor of the author.



87

expresses the tree of sequents structured by labels. A label is a finite sequence
of natural numbers hn1, . . . , nki. If ↵ = hn1, . . . , nki, then ↵ · n is the label
hn1, . . . , nk, ni. A tree is the set of labels T such that hi 2 T and ↵ 2 T for each
↵ ·n 2 T . A labelled formula is a pair ↵ : A where ↵ is a label and A is a formula.
A tree-sequent is an expression Γ

T) ∆ where Γ and ∆ are finite sets of labelled
formulas, T is a tree, and all labels appearing in Γ and ∆ are elements of T . The
calculus TCD⇠ is obtained by adding to TCD, the calculus for CD, provided in
[5, 6], the following rules for empirical negation:

hi : A,Γ T) ∆

Γ
T) ∆,↵ :⇠ A

()⇠)
Γ

T) ∆, hi : A

↵ :⇠ A,Γ
T) ∆

(⇠))
.

The strong completeness of TCD⇠ is shown without so much difficulty, since a
tree-sequent reflects the structure of a Kripke model.

The third section defines the formulaic translation of a tree-sequent. Although
the definition is based on the one in [6], a special treatment is needed in order to
handle the label hi. Based on the definition, the following theorem is obtained.

Theorem 1. For any set Γ [ {A} of formulas, the following are all equivalent:

• A is a semantic consequence of Γ,

• A is derivable from the assumptions Γ in the Hilbert system for CD⇠,

• A tree-sequent Γ T) A is derivable in TCD⇠.
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for empirical negation, described above. The Hilbert system for CD⇠ is obtained
by adding to CD the following axioms and rules related to “⇠”:

A_ ⇠ A,
⇠ A! (⇠⇠ A!B),

From A _B, we may infer ⇠ A!B,
From ⇠ A[z/x] _B, we may infer ⇠⇠ 9xA ! B.

Both of the axioms and the first rule were already provided in [2].
The second section provides tree-sequent calculus TCD⇠ for CD⇠ and shows

the strong completeness. A tree-sequent calculus handles a tree-sequent, which
1This work is based on discussion with Katsuhiko Sano, the supervisor of the author.
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‘Strict finitism’ is a constructive view obtained from intuitionism by replac-
ing the notion of ‘possibility in principle’, on which intuitionism is based,
with ‘possibility in practice’. Among the literature, Wright’s [3] stands out
as it contains a sketch of formal systems of strict finitistic reasoning. We
will present our reconstruction of his first-order predicate logic. The for-
mulation is in the classical metatheory, as opposed to the strict finitistic
metatheory that he used. A sound and complete pair of a Kripke semantics
and a natural deduction system will be provided.

While Wright’s original semantics is similar to that of IQC, we will
incorporate the existence predicate (E) as in IQCE (cf. e.g. [2]). This
is to treat quantification properly. A model will be a tree-like structure
that represents all possible histories of actual verification by an agent; and
Wright’s negation stands for practical impossibility, i.e. k |= ¬A i↵ l 6|= A
for all l. Hence ¬P (a) can meaningfully hold at k even if object a is not
in the domain of k. Thus quantification should range over the objects in
the whole frame if the term is within the scope of ¬; otherwise, it should
be restricted. E will denote the objects that ‘exist’ or are ‘available’ to the
agent, in order to explicate this restriction.

Formally, we require the strictness of E: k |= P (c) implies k |= E(c0)
for any atomic P and subterms c0 of any closed c. Also, after [1], we use
‘constant domain’ intuitionistic frames, and regard the extension of E at k
as the domain of k. The forcing conditions of the quantifiers for existing
objects are as in [1]: we set

• If x is not in the scope of ¬, k |= 8xA i↵ k |= E(d) ! A[d/x] for all
d 2 D (the constant domain); and k |= 9xA i↵ k |= E(d) ^ A[d/x] for
some d.

• If x is in the scope of ¬, k |= 8xA i↵ k |= > ! A[d/x] for all d; and
k |= 9xA i↵ k |= A[d/x] for some d.

Wright’s implication A ! B means that if A holds in the future, so does
B: k |= A ! B i↵ for any k0 ≥ k with k0 |= A, there is a k00 ≥ k0 such
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that k00 |= B. This is intuitionistic implication with ‘time-gap’. He did not
restrict the length of the gap. We assume it was because every structure in
his strict finitistic metatheory is considered ‘small enough’. We would, as
part of classical idealisation, also accept a gap of any finite length.

As a result, ¬A_¬¬A, ((A ! B) ! A) ! A and ⇠⇠ A ! A are found
valid, where ⇠ A is an abbreviation of A ! ?. On the other hand, Modus
Ponens (A ! B,A/B) and A _ ¬A fail.

Our proof system comprises (i) all rules of IQC, and IQCE’s quan-
tification rules and strictness rules with some modifications and (ii) ¬-
introduction rules and (iii) a rule that takes care of the ‘stability’ of for-
mulas. A is stable if k |=⇠⇠ A implies k |= A. We define a class ST of
formulas with stability, and allow for inference (⇠⇠ S/S) for all S 2 ST.
The completeness proof is in the Henkin-style.

Notably, Wright expected (A ! B) ! ((A ! ¬B) ! ¬A) to be valid
in his strict finitistic metatheory, but it is not in our logic. In fact in the
classical formulastion, we find it equivalent to (i) ¬¬A ! A and to (ii) a
semantic principle Wright rejected. We say a formula A is prevalent if for
any k, there is a k0 ≥ k with k0 |= A. He rejected that every satisfiable
formula is prevalent (the formula prevalence property), as it is unnatural:
the verification of a formula may as well require so many resources that it
could not be verified after verifying others.

Under the formula prevalence, two distinctions are lost: k |= ¬A i↵ k |=⇠
A, and A is satisfiable i↵ A is prevalent. If, further, E(d) is prevalent for all
d 2 D (the object prevalence property), then the distinction between the two
modes of universal quantification is also lost: k |= 8xA i↵ k |= > ! A[d/x].
We will show some results that satisfiability and validity in the models with
these prevalence properties behave almost classically.
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